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Spiral Water Wheel Pump 
 
This pump uses a rotating pipe coil to pump water.  It requires only moving water 
to power it.  

The pump in the picture pumps 400 gallons per day to a tank 50 ft above the 
pump. 

Low-impact lifestyler extraordinaire, John Hermans, 
devised and built a water wheel for Earth Garden’s 
writer and forest campaigner, Jill Redwood. Jill can 

now refill her water tank from the Brodribb River 
near her farmhouse in Victoria’s East Gippsland. 
Her water wheel is silent, pumps about a litre a 

minute, goes 24 hours a day, has only one small 
moving part, and works on an ancient principle. 

Here John describes how to build one. 

by John Hermans 

Clifton Creek, Victoria. 

AS I have no political lobbying or media skills my way of helping the environment campaign is to help 
those committed to saving forests. My skills lie in the areas of inventing and building. Jill had a 5 hp fire 
fighting pump she used to refill her concrete water tank every fortnight or so. I first devised an 
alternative pump using a set of water wheels, which, via chains and cogs that gave a 4:1 step up, 
drove a small piston pump. 

The petrol pump was temperamental and noisy. This improved model was temperamental and oily. It 
did work quite well but was prone to occasional mechanical failure and there was the possibility of it 
leaking oil into the pristine Brodribb River. So I got to work on an idea I had seen illustrated as a kids’ 
toy. As Jill lives on the upper reaches of the Brodribb River, the small flow in the river was not enough 
to operate a hydraulic ram pump. The spiral water wheel has the advantage of being environmentally 
friendly, almost maintenance free, made of basic cheap materials and is relatively easy to make for 
anyone with a welder. 

This positive displacement pump is made from a single length of coiled poly pipe and is designed to be 
powered by water. The pipe is coiled in a vertical plane and mounted on a horizontal axle. As the 
paddles rotate the coil of poly pipe above the water, the lower part is immersed. The open end of the 
coil takes a small ‘gulp’ of water every time it rotates. An alternating sequence of air and water is 



driven along the pipe towards the centre of the spiral. Successive coils of pipe lead to a cumulative 
increase in the pump’s pressure output. When a land-fixed pipe is connected to the last and smallest 
coil, then water can be shifted to a higher point, such as a dam or a tank. In this case, Jill’s tank is 
about 16 metres above the river. 

Paddles and coils 

The set of undershot paddle wheels (powered from water flowing below, not from water dropping onto 
the wheels from above) drives the whole show. This is one of the oldest and simplest forms of motor, 
driving one of the oldest and simplest forms of pump. The whole unit consists of only one small 
rotating part called a rotating joiner, or in plumber terms, a spinning nipple. 

When assembling the coils on the spokes of the frame, I had no idea how many coils and at what 
diameter was needed to pump the water to the 16 metre head. The water wheel ended up about two 
metres in diameter. As the water wheel and the spiral both needed to dip into the water, the coil has to 
be the same diameter as the paddles. 

Three quarter inch (19 mm) poly pipe can be coiled down to about 500 mm in diameter before it starts 
to kink. If the coils are kept close together, around 40 coils can be made. I decided to make two lots of 
coils consisting of 20 coils each, so there were two openings to take a ‘gulp’. In theory this should have 
pumped twice the volume of water as a single coil rotating at the same speed. However, this proved to 
be too heavy for the flow of the stream to move, so I had to remove one coil of pipe. As Jill’s place is 
three hours drive away, there was much guesswork involved in my workshop and redesigning on site. 

The final coil design saw 50 metres of three quarter inch (19 mm) poly pipe coiled into 20 loops from 2 
metres to half a metre diameter. The pumping rate at this site is about one litre a minute but varies 
from season to season. 

Figuring it out 

My theory then is that to successfully pump water, the coiled pipe needs to be about three times as 
long as the height it is being pumped to. That’s a 3:1 ratio. I assumed that the size of the pipe is less 
important than the total length. Larger loops are more effective at forcing water up than small loops but 
consume more length. Fewer larger loops may be just as effective as many smaller loops. 

The water exiting the smallest coil in the centre is piped into the hollow shaft of the water wheel’s axle. 
The end of this then joins a stationary water pipe near the bank, in this case connected to a boom arm 
(described below). To join the rotating shaft to the fixed poly pipe, a joiner is needed that can spin 
constantly. Unless the connection is perfectly in line, these watertight rotating joiners can wear out 
quickly. 

To avoid flood damage to this water wheel pump, I mounted the axle and bearings onto a three metre 
boom of 100 mm RHS that pivots at the end anchored to the bank. Along this boom, a height 
adjustable support is set into the bank. A steel cable is attached to the water wheel that is operated by 
a winch fixed even higher up the bank (see illustration). Not only does this allow it to be cranked out of 
the water if a flood is imminent and hoisted safely above flood height, but it also allows the water wheel 
to be lowered or raised to match the high and low flows of the river. 



The spiral water wheel replaced a noisy and temperamental petrol pump. 

Construction pointers 

Here are a few more pointers to help with constructing the coil section. To attach the poly pipe to the 
angle iron spokes, use 1 mm stainless steel wire (you can order it from engineering suppliers). The 
end of the three quarter inch poly pipe that scoops up the water should be increased in diameter for 
the last loop. I used one inch (25 mm) for half a loop and then one and a quarter inch (32 mm) poly 
pipe for the last half a loop. This allows for greater volume to be scooped up each rotation. 

As both water and air are pumped up the delivery line together, it is best to send the pumped water 
directly to the storage tank or dam. If the inlet and outlet line to the tank are the same, a special air 
bleed line close to the pump will be needed, as Jill discovered when trying to use the taps on the same 
line or have a shower! 

A one-way valve will also need to be set in the line to stop water draining back out when the wheel is 
not pumping. A filter isn’t a bad idea either. You can also fix a fly wire guard to the inlet end of the coil 
that also reduces debris from entering the system. 



One modification that had to be made over the last couple of years has been a more 
robust and reinforced hollow shaft. The constant flexing and movement of the water 
wheel, especially with faster flows, stresses metal and any weak spots are soon 
discovered. The water wheel was sited on a slight bend in the river where it was narrow 
and the water had a higher velocity.  

Variables that allow this design to pump effectively are: 

 river flow  
 size of paddles  
 number of paddles  
 diameter of the wheel  

 diameter and number of the coils  
 submergence of the coils  
 inlet pipe diameter  
 height of storage tank/dam.  

This spiral pump was a direct replacement of a small standard piston pump and has proved to be just 
as efficient at pumping a set volume per day. 

Overall, it’s a beautiful piece of alternative technology. And Jill says it also doubles as relaxation 
therapy: after a torrid session dealing with planet wreckers, sitting by the river watching it quietly turn 
puts some equilibrium back into the soul. 

------------------------------------------     
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The Spiral 
Pump 

A High Lift, Slow Turning Pump  



 

By Peter Tailer, TailerP@aol.com  

80 Lyme Road, Apt 318 
Hanover, NH 
03755 
U.S.A.  

Summary: A spiral pump, first 
invented in 1746, has been recreated 
and tested at Windfarm Museum 
using lightweight and inexpensive 
modern materials. A 6 foot diameter 
wheel with 160 feet of 1-1/4 inch 
inside diameter flexible polyethylene 
pipe is able to pump 3,900 gallons of 
water per day to a 40 foot head with 
a peripheral speed of 3 feet per 
second. With its low torque 
requirements, the pump is 
particularly suited to be mounted on 
and driven by a paddle wheel in a 
current of two feet per second or 
greater. This easily built, low 
maintenance spiral pump can be 
used to provide water without the 
need for fuel wherever there is a 
flowing stream or river. It can also 
be hand turned or otherwise driven 
to provide a low cost, efficient 
pump.  
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which readers of this document may also find interesting.  

History and Theory of the Spiral Pump 

In some instances, records of preindustrial technology can be a source of 
concepts which can be updated with modern materials and modified to be 
utilized in today's technology transfer efforts. In recent research, Peter Tailer, 
curator of the Windfarm Museum on Martha's Vineyard, Massachusetts, 
uncovered a two hundred and forty year old invention that has great potential as 
a low cost, low technology pump for certain situations. This invention is the 
spiral pump created in 1746 by H.A. Wirtz, a pewterer of Zurich, Switzerland.  

Wirtz invented the spiral pump to provide water for a dye works just outside of 
Zurich. Little is known about the inventor or the circumstances that led him to 
create the pump. He probably was aware of the tubular form of the Archimedes 
screw and the Persian wheel. Both of these pumps had existed for hundreds of 
years. They were low lift rotating pumps which could not raise water higher 
than the pump structures themselves. As Wirtz was a pewterer, he would have 



possessed the metal working skills necessary to form a tubular spiral. It is most 
likely that the dye works were located on the Limmat River, a tributary of the 
Rhine, where the pump was powered by either a water wheel or horse whim.  

The Wirtz spiral pump was constructed so the end of the outside pipe coil 
opened into a scoop. The inner coil led to the center of the wheel where it 
joined a rotary fitting at the axis of the machine. Figures 1 & 2 show an 
historical reference's representation of the pump. This was taken from A 
Descriptive and Historical Account of Hydraulic and Other Machines for 
Raising Water by Thomas Ewbank, edition of 1849, New York City.  

 
Figure 1: Historic Wirtz Pump—1842 drawing 



 
Figure 2: Historic Wirtz Pump—1842 drawing 

The Wirtz pump was constructed so that, with each revolution of the spiral, the 
scoop collected one half the volume of the outer coil. As water was taken into 
the coils, each column of water transmitted the pressure through the air to the 
preceding column of water. In this way the water in each coil was displaced to 
provide a pressure head. A cumulative head was built up at the inner coils and 
was conveyed through the rotary fitting to an ascending delivery pipe.  

Ewbank reports these pumps to have been highly successful and states they 
were used in Florence as well as Archangelsky in the later part of the 18th 
century. In 1784, a machine in Archangelsky is recorded to have raised "a 
hogshead of water in a minute to an elevation of seventy-four feet, through a 
pipe seven-hundred-sixty feet long." Lead or sheet metal was probably used to 
fabricate the coils, which must have made the machine extremely heavy. 
Problems encountered with the weight are mentioned as well as the general 
unwieldiness of the larger machines. These slow turning, cumbersome pumps 
became obsolete with the development of high speed steam engines.  



An ideal Wirtz pump would follow Boyle's pressure-volume relationship and 
the coil volumes would change with respect to changes in the entrapped air 
volumes. Tubing of uniform diameter would not be formed as a spiral or as a 
helix. This was understood by Olinthus Gregory in his work entitled Treatise of 
Mechanics, edition of 1815. Gregory states on page 230 of Volume I that, "If, 
therefore, a pipe of uniform bore be wrapped round a conic frustum...the spirals 
will be very nearly such as will answer the purpose. It will not be quite exact[,] 
for the intermediate spirals will be rather too large: the concoidal frustum 
should in strictness be formed by the revolution of a logarithmic curve. With 
such a spiral the full quantity of water which was confined in the first spire will 
soon find room in the last, and will be sent into the main at every rotation. This 
is a very great advantage, especially when water is to be much raised."  

Gregory also described spiral pumps formed as a huge clock-spring-like spiral 
sandwiched between two wood disks. This construction would allow the cross-
sectional area of the coils to be varied so that a spiral pump could be built with 
the correct volume in each successive coil.  

The above cited 1849 work by Ewbank stated that he was not sure of the 
relative advantages of the spiral or the helical Wirtz pump, the helical pump 
having coils of the same diameter. The limits of the helical pump can be 
approximated. If the inlet coil takes in half its volume in both air and water, 
when maximum pressure is developed by the helical pump, the final cumulative 
pressure head in the discharge coil will be substantially equal to the coil 
diameter. Coils towards the inlet coil will develop heads of decreasing 
pressures as air in the successive coils is compressed to a progressively lesser 
extent. After a large number of helical coils, the pressure head in the inlet coil 
will approach zero. Water will occupy the bottom half of the inlet coil and 
water will be displaced by pressure to the inlet side of the outlet coil. Thus the 
cumulative volume change of air trapped in the inlet coil will substantially 
approach one half when this air reaches the outlet coil. This cumulative 
reduction in volume can only provide an outlet gauge pressure of one 
atmosphere, so that a helical Wirtz pump can apparently only pump to a 
limiting head of 54 feet.  

While this may be a sufficient head for many purposes, Windfarm Museum 
built a spiral Wirtz pump to evaluate the potential to reach higher pressures and 
pump to high heads.  

In considering the idea of building a spiral pump, we theorized that if 
cumulative heads build up a pressure of one atmosphere (14.7 psi or 34 feet of 
water), the volume of air in that coil will be compressed to one half its initial 



volume. However, the water in that coil is incompressible and occupies its 
original volume. Thus, in theory, the length of the coil where the pressure 
reaches one atmosphere should be 3/4 the length of the first coil if the first coil 
takes in half its volume of water and half of air with each revolution. If the 
innermost or discharge coil is one half the length of the first coil, a theoretical 
evaluation would indicate that it would be completely filled with water.  

However, Ewbank stated that, when compressed air and water occupied more 
than the volume of an inner coil, the water "will run back over the top of the 
succeeding coil, into the right hand side of the next one and push water within 
it backwards and raise the other end." This caused a succession of flow back 
over the tops of the coils ending with a dumping of the excess and a lessened 
intake at the scoop. This can only take place in a spiral pump where the volume 
of the coils decreases to the extent that some coils cannot accommodate water 
and compressed air passed into them. The Windfarm spiral pump was built 
with the diameter of the inner coil about one half that of the outer coil. This 
was done so that a spiral of a given outer diameter could accommodate more 
tubing of a given diameter to provide greater cumulative heads and pump to the 
greatest height possible.  

The possibility that Wirtz pumps constructed of modern materials could be 
used in specific situations in developing countries motivated the Windfarm 
staff to build and test a working model. The model was constructed under the 
direction of Jonathan West who also designed the testing procedure.  

When built with modern lightweight and inexpensive plastic pipe, the spiral 
pump can be mounted on and driven by a paddle wheel. For pumping to low 
heads, the spiral pump is quite satisfactory. However, when higher heads are 
required, the spiral pump can be used to provide water for a home, a village, a 
fish farm, or small scale irrigation. This simple machine can be site built and 
maintained by relatively unskilled users.  

Since first completing this report, two projects came to our attention. First was 
an article in a quarterly publication entitled Waterlines, Intermediate 
Technology Publications Ltd., 9 King Street, London WC2E 8HW, UK. In 
Volume 4, No. 1, of July, 1985, there was a report on pages 20-25 of a Danish 
Guide and Scout Association project on the Nile near Juba in Southern Sudan. 
This project used raft-mounted, paddle-wheel-driven, helical Wirtz pumps for 
irrigation. Each pump had four sets of 2" ID (52mm) tubing which was wound 
on a float-mounted drum which was paddle wheel driven to pump to a head of 
13'4" (4 meters). These pumps were reported to be very successful pumping to 
this head.  



The second Wirtz pump project was brought to our attention by Peter Morgan 
of the Blair Research Laboratory, P.O. Box 8105, Causeway, Harare, 
Zimbabwe. Peter Morgan was probably the first person to build a Wirtz pump 
after it was forgotten and lost for more than a century. His account of its re-
invention follows as it is not only interesting, but helpful in understanding the 
device:  

The spark of the idea jumped when I was adjusting a pipe carrying a gas from a 
biogas digester we had installed beneath a toilet at the Henderson Research 
Station near Mazowe. The tank had developed at least one cubic meter of 
methane, but I could get no gas out of the end of the pipe which led from the 
digester to the stove nearby. I remember being annoyed by this as it was 
obvious that a type of airlock had developed in the pipe leading gas from the 
tank to the outside.  

We looked down the toilet hole and I noticed that the pipe had become coiled 
several times. This was possible because we had allowed quite a lot of pipe to 
be used to accommodate the up and down movement of the digester gas tank. 
In earnest I pulled hard on the pipe whilst looking straight at the end of it. The 
pulling of the pipe released the airlock and I got a facefull of very bad smelling 
mess and gas. Pulling the pipe had released the airlock and gas now flowed 
freely outward.  

From that moment I wondered what could have been going on down there. It 
was obvious that fluid produced by the digester had built up at the base of the 
coils to produce airlocks. These had, in effect, held back the gas produced by 
the digester. I wondered whether the reverse might be true. Could one coil a 
pipe up, which contained a number of deliberately made airlocks, and develop 
pressure?  

On a later visit to Henderson with my good friend, Peter Gaddle, Blair's Chief 
Field Officer at the time, we came across a length of clear plastic pipe laying on 
the ground. Recalling the experience with the digester, I picked up the pipe and 
coiled it vertically in my hands with the innermost coil turned to the horizontal 
and then turned upward to form a vertical segment.  

I asked Peter to carefully pour water down the vertical pipe. Water passed over 
each spiral of the tube into the next spiral and then into the next. A series of 
airlocks had been formed in the pipe. As more coils had water and airlocks 
form in them, the level of the water standing in the vertical segment became 
higher. I rotated the whole spiral tube in my hand and, to my joy, water shot out 



of the top of the vertical pipe segment above the spiral! This was a most 
memorable and thrilling experience for Peter and me.  

I couldn't wait to get home and make a bigger version of the model in my 
kitchen. This too worked well and I found that by adding water to one end of 
the spiral and rotating it, I could drive water up the vertical pipe segment some 
distance.  

The day following Peter and I built a two meter diameter model at Henderson 
and fitted it to a waterwheel with paddles attached. The paddle wheel was 
mounted in a small water channel. The wheel turned and on each turn I 
arranged for the outer coil to pick up water from the channel. On each turn a 
core of water followed by a core of air passed into the spiral next to it until 
finally arriving at the innermost coil. It was the led to a rising pipe through a 
simple water seal. The effect was thrilling as the system worked so well. Water 
was fed into a tank and the machine worked for years afterward.  

I then developed a horizontally opposed spiral pump with two water inlets and 
two coils feeding to a single outlet. This doubled the volume of water 
produced. From this we then built a much bigger 4 meter diameter wheel on the 
Mazowe Citrus Estates canal. This pumped an impressive 3697 liters of water 
per hour to a height of 8 meters above the canal. After two or three years, only 
the wheel was rebuilt of stronger materials where it remains today as reliable as 
when first built. Several other wheels have since been built in Zimbabwe.  

Peter Morgan's work with the Wirtz or spiral pump has been published in a 
local Zimbabwe science magazine, "Science News", in the United-States-based 
VITA (Volunteers in Technical Assistance) News of January, 1983, and in a 
Blair Bulletin of 1984.  

Construction 

Wheel and Spiral 

When considering the building of a spiral pump, we assumed that the pressure 
produced would be directly related to the wheel diameter and the number of 
coils. After some deliberation, a six foot wheel was built. It was felt that a 
smaller wheel with proportionately smaller coils might not provide high enough 
pressures for a realistic evaluation of working sized machines.  

Two different pipe sizes were used to form coils on the wheel to provide a 
broader range for the tests. The first series of tests were performed on the wheel 



with the coils formed from 160 feet of 1-1/4 inch ID flexible polyethylene pipe 
(rated 100 psi at 73°F). This configuration is shown in Figure 3:  

 
Figure 3: Front view of Wirtz pump 

The outside coil was formed on the circumference of the six foot wheel. Each 
successive coil was wound closely within the outer coil to maintain the largest 
possible diameter for all the coils. This provided thirteen coils with the radius 
of the outer coil being 36 inches and the radius of the innermost coil being 17 
inches. Another series of tests was performed on the wheel with coils formed 
from 280 feet of 3/4 inch ID flexible polyethylene pipe (rated 100 psi at 73°F), 
A photograph of this wheel is shown on the cover. This was wound with the 
outer coil 36 inches in radius and the innermost coil 16 inches in radius to 
provide a total of twenty-one coils.  

The wheel itself was built in a six spoke fashion with a double thickness of 1 x 
8 planking. A 1-1/2 inch hole was drilled in the center of the wheel to allow 
passage of a pipe leading from the innermost coil to the rotary fitting. See 
Figure 4:  



 
Figure 4: Back view showing rotary fitting 

A 1 inch steel shaft provided a cantilevered support for the wheel by means of a 
fabricated hub. The shaft was welded to a 12 inch diameter 1/4 inch thick steel 
plate. Six 3 x 3 x 1/4 inch pieces of angle steel were cut 1 1/2 inches long and 
welded to the plate at equal spacings to provide brackets to fix the hub to the 
wheel. The stand-off provided by the brackets allowed the pipe from the 
innermost spiral to pass behind the plate and, with a 90° connector, extend 
through the hole in the center of the wheel.  

Rotary Fitting 

The rotary fitting, while it is easily fabricated, is a critical part of the spiral 
pump. It must provide a relatively watertight seal to prevent fluid and pressure 
loss. An exterior view can be seen in Figure 5 and a detailed drawing with all 
of the parts indicated and described is shown in Figure 6:  



 
Figure 5: Close-up of rotary fitting 





 
Figure 6: Longitudinal section through rotary fitting 

The rotating portion of the fitting was formed by connecting a 6 inch length of 
1-1/2 ID copper pipe to the polyethylene extending through the center of the 
wheel. The copper pipe was used as it provides a good bearing surface for the 
packing.  

The fixed portion of the rotary fitting was constructed from 2 inch ID rigid 
plastic polyvinyl chloride (PVC) pipe and pipe fittings. The first element of the 
housing entered by the copper pipe is a brass disk which retains packing. This 
packing disk was made from a 2 inch brass threaded pipe plug which had been 
drilled and filed for a clearance fit around the copper pipe. A pair of small 
shallow holes (not through holes) were drilled on each side of the large opening 
transfixed by the copper pipe. This pair of holes allowed a special wrench with 
two projecting pins to be used to turn the disk. The brass disk was screwed into 
an adapter for 2 inch plastic pipe to female thread. Since the brass disk retains 
and compresses packing, it greatly helps to form an inwardly sloping 45° 
chamfer or bevel to urge packing towards the rotating copper pipe.  

Two guide disks were fabricated from flat plastic stock obtained from 2 inch 
PVC threaded pipe plugs. The centers of the guide disks were drilled and filed 
to provide a clearance fit for the 1-1/2 inch copper pipe. The outer edges of the 
disks had the threaded portion of the plugs filed away so that their OD would 
match that of 2 inch PVC pipe. A guide disk was inserted on the far side of the 
inner annular dividing ring of the female adapter. A short length of 2 inch 
plastic pipe was inserted and glued in the adapter to clamp the first guide disk 
in place. A 2 inch coupling was then glued at the other end of the short pipe 
length.  

The second guide disk was inserted in the coupling against its inner annular 
dividing ring and an adapter for 2 inch plastic pipe to male thread was glued in 
place to secure it. A 2 inch to 1-1/4 inch reducing pipe coupling was placed on 
the adapter to receive a 1-1/4 inch male adapter for polyethylene pipe.  

The seal of the rotary fitting was formed by a packing of plumber's twine 
between the copper pipe, the first guide disk, and the brass disk. The brass disk 
was slipped on the copper pipe and then the soft cotton packing was wound 
around the pipe in the direction it was to rotate. At this point the brass disk was 
tightened. It was found necessary to securely clamp the non-rotating portion of 
the fitting to the test stand and the tubing of the rotating portion to the wheel in 



order to keep pump pressure from forcing the elements of the rotary fitting 
apart.  

Any equivalent rotary fitting construction may be used.  

Testing Apparatus 

The pump stand or mounting frame was built so that the Wirtz spiral pump 
could become a permanent operating exhibit and teaching tool when set in a 
lake at Windfarm Museum. For this reason the wheel was placed at one end of 
an eight foot long stand so that, when it was in the lake, it would be able to be 
turned from the shore. The wheel was rotated by a gear and pinion having a 4.5 
to 1 ratio. The drive gear was bolted to the hub and the pinion was fixed on a 
raised shaft parallel to the drive shaft. The pinion shaft was turned by a hand 
crank offset 12 inches from the shaft. All bearings on the apparatus were oiled 
oak block.  

For the early testing, a small water tank 7x2 feet was constructed beneath the 
wheel using wooden planking and a single 4 mil polyethylene sheet draped 
within for a seal. A weir was notched in the tank and used in conjunction with a 
running garden hose to maintain a constant water level. For later tests, a larger 
7x9 foot tank was built so that pumping during a series of tests did not 
significantly change the water level.  

In order to gather information on the actual height to which the pump could 
deliver water, the discharge was directed up a nearby 70 foot windmill tower. 
See Figure 7:  



 
Figure 7: Pump, scoop, and test tower 

At each test head, or level to which the water was being pumped, a catchment 
system was set up that allowed the discharged water to be directed into or out 
of a bucket with control lines operated from ground level. The catchment 
bucket funneled the discharge into a drain pipe which led to measuring 
containers below. A pressure gauge, a purging valve, and a delivery pipe shut-
off valve were also installed in the system at the base of the tower. See Figure 
8:  



 
Figure 8: Pressure gague and fitting at base of test tower 

To measure the torque required for pumping, a rope and a 50 lb. spring scale 
were used. The rope was attached to and wrapped around the circumference of 
the wheel and led over a pulley placed on the test stand. This allowed the 
pulling of the rope to directly turn the wheel by exerting a force tangent to its 
circumference. This apparatus is shown in Figure 9:  



 
Figure 9: Torque test apparatus 

Testing Procedure 

Three groups of tests were carried out to determine the parameters of the spiral 
pump. The first tests were performed to determine the capacity of the pump at 
different speeds. The second group of tests were performed to determine the 
effect of different sizes of scoops. The final group of tests were carried out to 



determine the relationship between the size and number of coils with respect to 
the actual heads to which water could be delivered.  

The initial tests to determine the pump discharge with respect to its rotational 
speed measured discharge while varying the revolutions per minute (rpm) from 
two to twelve over three minute intervals. The wheel for these tests mounted 
the coils of 1-1/4 inch ID tubing described above. The scoop for these tests was 
of 3 inch ID pipe 22 inches long.  

The first tests showed the positive displacement nature of the spiral pump as 
the water delivered remained fairly constant with different wheel speeds. This 
indicated that the tests on the scoops of different capacities could be made at a 
single selected rpm. The historical references suggested that the scoop be sized 
so that one-half the volume of the outer coil is collected with each revolution of 
the wheel.  

The second tests were also carried out using the 1-1/4 inch ID tubing coils 
mounted on the wheel. The scoops were of 3 inch ID plastic pipe and had their 
open ends cut at an angle so that they were level with the water upon exiting. 
The effective scoop lengths were 1, 12, 22, and 36 inches. Scoop length was 
measured from the square cut end to the center of the angle cut. Discharge and 
torque measurements were made at heads of twenty and forty feet for all the 
scoop sizes.  

The torque was measured by attaching the 50 lb. spring scale to the rope 
wrapped around the periphery of the wheel and pulling in a steady manner. 
Twelve readings were recorded at equal intervals over two revolutions.  

The third group of tests were made with the wheel mounting coils of the 3/4 
inch ID pipe described above. Water was pumped to 40 and 60 feet with output 
and torque measured.  

An additional pump/no-pump test was carried out at 80 feet using an extension 
attached to the top of the tower. It was not possible to set up the catchment 
system at this level to measure output.  

Test Results 

The results of the first series of tests are shown listed in Figure 10:  



 
Figure 10: Outputs at different speeds 

These tests found the Windfarm spiral pump to be a positive displacement 
pump.  

Figure 11 graphs the wheel speed vs. the pump output:  



 
Figure 11: Flow rate and speed 

The output and torque measurements for different scoop sizes are shown in 
Figure 12:  

 
Figure 12: Scoop lengths, outputs, and efficiency 

The output and torque measurements for the 3/4 inch tubing are shown in 
Figure 13:  



 
Figure 13: Data for 3/4" tubing spiral 

Discussion 

The results of the first group of tests performed on the Windfarm spiral pump 
show it to be a positive displacement pump at low speeds. As long as the wheel 
turned at all, there was output. For the larger size pipe the machine also 
performed well at the maximum speed tested, 12 rpm. It actually had a 4 
percent increase in efficiency at this higher speed (this higher calculated 
efficiency could be due to our inability to measure the actual torque input at the 
higher speeds where air lift may have decreased pumping pressure). In 
addition, the pump was turned at the highest speed possible with the described 
gearing, 16 to 18 rpm, and it continued to pump. The maximum wheel speed 
for this wheel would appear to be not much greater than 18 rpm as this speed 
causes considerable disturbance when the scoop enters the water. Any higher 
speed would probably result in a decrease in efficiency.  

The results of the speed tests on the smaller, 3/4 ID tubing show a greater 
limiting effect. The maximum pumping speed at a 60 foot head was 5 rpm. At 
speeds greater than this, pumping ceased due to a disruption of the flow in the 
coils. This condition was labeled "blow-back" (discussed in detail below).  

The smaller tubing was found to perform well at wheel speeds up to 5 rpm at 
the 60' head and up to 10 rpm at the 40' head. The efficiency was calculated to 



be about 39% for all of the operating speeds. A 1.5 psi drop in pressure was 
discovered between 2 and 5 rpm, from 25 to 23.5 psi. This is believed to be due 
to the air lift effect in the delivery pipe (discussed in detail in the Air Lift 
section below).  

The tests on the scoop sizes done on the 1-1/4 ID coils found the suggestion of 
the historical references that the scoop collect one half the volume of the outer 
coil to appear to be accurate. The volume collected by a scoop is the sum of the 
volume of the 3 inch diameter scoop and the volume of the immersed and 
water-scooping portion of the outer coil which was about 30 inches. As may be 
seen in Figure 12, at the 40 foot head the 12 inch scoop filling 62% of the outer 
coil was 2% more efficient than the 22 inch scoop filling 75% of the outer coil. 
The 36 inch scoop filling 85% of the outer coil was 6% less efficient than the 
12 inch scoop and the 1 inch scoop that filled 36% of the outer coil was 8% less 
efficient.  

At the twenty foot head the 36 inch scoop filling 85% of the first coil was 1% 
more efficient than the 12 inch scoop filling 62% of the first coil. This may be 
explained because, at the lower head and pump pressure, the losses due to the 
friction in the machine require a larger percentage of the total pumping torque.  

Flow Over 

During the tests a rush of water could be heard flowing from inner coils 
backward to outer coils. This verified Ewbank's 1849 indication that this flow 
took place. The flow appears to take place only when the inner coils have 
insufficient volume to contain the compressed air and water passing to them. 
Although it must reduce pump output, it is not certain to what extent this 
internal flow influences the characteristics of the spiral pump. It may maximize 
the effect of the air columns or cumulative heads of the inner coils. As 
suggested by Gregory in 1817, a spiral pump could be designed to minimize or 
eliminate this internal flow. The extent that such a design may result in a higher 
pump efficiency remains to be investigated.  

Blow-back 

Blow-back occurs when the pump pressure exceeds the cumulative pressures of 
the coils. The blow-back pressure is the pressure at which this occurs. This 
pressure can be determined for each wheel configuration by closing the valve 
on the pump output and pumping until there is a sudden drop in pressure and a 
surging of water and air back through the scoop. During the Windfarm tests, 



blow-back happened under different conditions for the two pipe diameters 
tested.  

Blow-back was found to occur at lower wheel speeds for the smaller diameter 
pipe of 3/4 inch ID. At 60' blow-back took place at 6 rpm whereas, at 80', it 
happened at 5 rpm. This was probably due to the larger friction factor for small 
diameter pipes. There was no blow-back encountered at slower speeds. Blow-
back also did not occur after stopping the wheel, allowing it to stand, and then 
resuming pumping. In addition, for these smaller diameter pipe coils if the 
wheel was oversped and blow-back occurred, the machine was able to resume 
pumping when turned at normal operating speeds. This indicated a self-starting 
capability.  

For the larger diameter pipe of 1-1/4 inch ID, the pump was found to be more 
sensitive at low wheel speeds. For heads up to that indicated by the blow-back 
pressure, the pump operated well at all speeds. When the head was higher than 
blow-back pressure, blow-back was encountered at very low wheel speeds or 
after stopping and then restarting. At these heads the air lift effect apparently 
had to play a larger role. At the 60 foot head, it was necessary to purge the 
system by reducing pump output pressure by opening the valve at pump level 
before it was possible to start pumping. On starting to pump to 60 feet, a wheel 
speed greater than 2 rpm had to be maintained. In addition, if the wheel was 
stopped from a higher speed and allowed to stand, on restarting the pump, 
blow-back would occur. This could be explained because, in the 60 foot high, 
1-1/4 inch delivery pipe, air was able to bubble up more easily through the 
water. On resumption of pumping not enough air was introduced into the 
delivery pipe with the standing water to reduce pressure below that which 
causes blow-back.  

Air Lift 

The very principle that allows this pump to create columns of water within its 
coils, that of alternately taking in air and water, also acts to increase the 
delivery head. The air, which is compressed as it moves toward the center of 
the wheel, expands as it goes up the delivery pipe, producing a lift effect on the 
water. Testing proved this effect by showing that the actual head reached was 
greater than that indicated by the pressure gauge in the system. The air lift 
effect was most evident when pumping to heights greater than those indicated 
by the blow-back pressure.  

The air lift effect was found to vary for the two pipe diameters tested. For 
example, the 3/4 inch ID pipe coils pumped water to 60 feet using a 1/2 inch ID 



delivery pipe operating at 23.5 psi. This pressure is equivalent to a 54.5 foot 
column of solid water. When the elevation was extended to 80 feet after an 
initial pumping pressure of 27.5 psi, the system settled to an operating pressure 
of 23.5 psi. By closing the valve to the delivery pipe, blow-back for this wheel 
configuration was found to occur at 28.5 psi. This pressure is equal to a 66 foot 
column of solid water. In addition, the maximum wheel speed at which 
pumping would occur decreased as the head increased for the smaller diameter 
coils. At 60 feet, a speed of 5 rpm would allow pumping. At 80 feet, the 
maximum pumping speed speed was reduced to 4 rpm.  

Wheel speed also was involved in the air lift phenomenon and was linked to 
blow-back. At very low speeds for the wheel with larger diameter coils 
pumping into the larger delivery pipe, the air was able to bubble up more easily 
through the water in the delivery pipe. This reduced its lifting effect and led to 
an increase in pump output pressure until blow-back occurred. This happened 
only when pumping to heads greater than water alone could be pumped at the 
blow-back pressure. At higher wheel speeds, air lift allowed the larger pipe to 
pump to heads higher than that indicated by the blow-back pressure.  

The size of the delivery pipe also appeared to influence the air lift effect. With 
the 1-1/4 inch ID delivery pipe at 60 feet, the 3/4 inch coils pumped with a 
pressure between 23.5 and 25 psi. When the delivery pipe from the 3/4 inch 
coils was changed from 1-1/4 inch ID to 1/2 inch ID at a head of 60 feet, the 
initial pumping pressure was 25 psi. It then stabilized between 16 and 21 psi 
with continued pumping. With the larger delivery pipe the pump pressure 
remained high as the small air volume put out by the 3/4 inch coils did not 
provide much air lift.  

Coil Design 

A method of approximating the number of spiral pump coils for a given 
delivery head up to 100 feet mounted on a given size wheel has been derived 
using Boyle's pressure-volume law. The following assumptions have been 
made to arrive at this approximation. The first is that the coils are represented 
as a static series of pressurized interconnected u-tubes. Each tube is sized to be 
equal to the volume of the water (assumed to remain constant and equal to one-
half the total volume of the first coil) plus that of the air. Since the air is 
compressible, the total volume of each respective u-tube would decrease as the 
center of the wheel is approached. Another assumption is that within the first 
coil and all the other coils, the head within each coil is assumed to be equal to 
the diameter of that coil. Actually, the maximum head in a given coil extends 
from the upper wall of the pipe at the bottom of the coil to the lower wall of the 



pipe at the top of the coil. However, this assumption would give less than a 5% 
error in the case of the outer first coil of a six foot wheel with 1-1/4 I.D. pipe.  

Knowing the pressure and the volume of the first coil (atmospheric pressure 
and the diameter of the wheel) and the delivery head or gauge pressure required 
at the n-th coil, then the volume of the n-th coil, which is its head or diameter in 
this simplification, can be determined. With the diameter of the n-th coil, the 
number of coils can be determined by assuming that the average head between 
the first and the n-th coil multiplied by the number of coils will give the total 
head. When designing a spiral pump, a 20% margin should be added to the 
determined coil number. This margin will help account for different pipe 
diameters and other variables.  

 

Note: The pipe diameter, d, cancels out in the above equations. Once the 
number of coils required for a given wheel are determined to provide a given 
pressure or head, a suitable pipe size can be selected to form the coils of the 
spiral pump.  



 

Compare this estimate to the Windfarm pump test results where D = 6', n = 12, 
and h(n) = 3' . With 1-1/4 ID tubing, blowback occurred at a head, H, of 48.5' 
of water. With a suitable delivery pipe and output, air lift will allow pumping to 
a higher elevation.  

Pump Efficiency 

There are several losses in the Wirtz pump that affect its efficiency. Within the 
coil fluid flow losses are quite small. If the Windfarm pump is turning at 9 rpm, 
water in the outer coil is moving at about 2.8 ft/sec and in the inner coil at 
about 1.4 ft/sec. The average flow rate in the length of tubing is about 2.3 
ft/sec, greater than the mere average of the two speeds, as more of the tubing 
forms larger diameter coils than smaller ones. From pipe flow tables the head 
loss for 1 1/4 in tubing would be about 5 ft of water. Even this small loss would 
be considerably reduced as the coil is not completely filled with water but has 
portions filled with air which has a vastly lower flow resistance.  

Another small loss would result from drag as the outer coils and the scoop turn 
in water to be pumped. This would be low as the speed is under 3 ft/sec.  

A much larger loss in the Windfarm pump coil is the result of "flow over" as 
described above. The inner coil can't hold the water scooped by the outer coil 
and the compressed air. As a result, torque which has been expended raising 
water on one side of the coils is lost as water runs down the other side. The 
efficiency of the Windfarm pump pumping to a head of one atmosphere would 
be greatly improved if the inner coil was 3/4 the diameter of the outer coil. The 
half of the volume of the outer coil of water and the half the volume of the 
outer coil filled with air and compressed to one atmosphere would then just fill 
this 3/4 diameter inner coil without flow over losses, when pumping to lower 
heads under one atmosphere, a helical pump is probably easier to construct and 
about as efficient as a spiral pump.  



In the delivery pipe there are two losses which reduce efficiency, fluid flow 
resistance and air lift slippage. Fluid flow losses are reduced by larger diameter 
delivery pipes, but air lift losses are lessened by smaller diameter pipes. 
Conventional air lift pumps bubble a steady stream of compressed air into the 
bottom of a riser pipe submerged below the water surface in a well. If the 
weight of water and air in the riser pipe is less than that of the water above the 
bottom of the riser pipe, water will flow up the riser pipe to be pumped from 
the well. As reported in Marks' Standard Handbook for Mechanical Engineers, 
Eighth Edition, 1978, air lift pumps can have an efficiency of 50%.  

As stated above, a pump pressure of 23.5 psi or 54.5 ft of water lifted water 80 
ft in a 1/2 in delivery pipe. This would indicate air lift alone was lifting water 
an additional 25.5 ft. If we assume the work that went into lifting a solid 
column of water and the work compressing air were equal, then the air lift 
should have raised water another 54.5 ft. and the air lift efficiency of this pump 
is 25.5 / 54.5 or 47%. Optimum delivery pipe sizes were not tested or the 
efficiency of air lift in sloping delivery pipes.  

It is very possible that an optimum delivery pipe size might provide a higher air 
lift efficiency in a Wirtz pump as it introduces slugs of water interspersed with 
volumes of compressed air into its delivery pipe rather than the steady bubbling 
of air as in the air lift pump. This will have to be determined by 
experimentation. At any rate, an overall efficiency of up to 75% would be 
Indicated for a well designed Wirtz pump.  

The Inclined Coil Modification 

Figure 19 shows an inclined coil Wirtz pump developed by David Hilton of 9 
Rowbotham Street, Toowomba, Queensland, 4350, Australia and reported in 
the quarterly Waterlines, Intermediate Technology Publications Ltd., 9 King 
Street, London WC2E 8HW, UK, in the issues of July, 1987, and October, 
1989:  



 
Figure 19: Inclined coil Wirtz pump 

The great advantage of the inclined coil pump for low head pumping is that it 
does not require a rotary fitting. A length of steel pipe is mounted on simple 
wood bearings to incline downward into water to be pumped. A helical coil is 
formed at the lower end of the pipe and enters it from a pipe "T." The first coil 
of the helix with an open end is half immersed in water so that a scoop is not 
required to fill half the coil with water.  

At the upper end of the pipe openings are formed through which pumped water 
may flow into a suitable trough. A handle may be provided to turn the pipe and 
its mounted coil as a unit. To increase output, a second coil may be connected 
to the pipe by a second "T" with its turns disposed between those of the first 
coil. This double helix would double output.  

In Figure 19, no mounting for the helical coils is shown. Any suitable mounting 
may be clamped or welded to the pipe to have the coils wound about it. with a 
20 ft pipe inclined about 20°, this pump can raise water to a height of 7' or over 
2 meters. If desired, a paddle wheel can be mounted on the inclined pipe above 
the helical coil to turn the pump.  

David Hilton describes an alternate construction in which a drum is fixed to 
extend from the lower end of the pipe. The helical coil or coils are wound 
around the drum and connected to the pipe. The drum floats on the water 



surface. The lower end of the pipe is laterally positioned by two vertical stakes 
driven near the drum. This allows a rise and fall in the body of water being 
pumped.  

Conclusion 

The limited tests performed on the Wirtz spiral pump constructed at Windfarm 
Museum demonstrate the excellent potential of this preindustrial concept when 
combined with today's available technology. One of most attractive ways of 
powering the spiral pump is to mount it on a paddle wheel placed in a river or 
stream. A series of paddle wheel driven spiral pumps may be connected to a 
common delivery pipe for a higher volume output.  

In some circumstances, hand or motor driven spiral pumps could be used to 
pump to high heads from canals, lakes, or very slow flowing rivers. Low 
maintenance and ease of construction would make a driven spiral pump a good 
choice compared to a piston pump.  

A 6 foot diameter water wheel with 5 foot long blades 8 inches wide could be 
constructed of wood as shown in Figures 14 and 15:  



 
Figure 14: Top view of paddle wheel and coil pump 



 
Figure 15: Side view of paddle wheel 

It could use steel pipe for both the paddle wheel bearing shaft and a 
communication for pumped water to the rotary fitting. The wheel could be 
made using nominal 2 x 2 inch spokes and paddle mounts. The rims would be 1 
x 4 inch boards. The bearings could be made from oiled hard wood or brass.  

The cost for the material for this paddle wheel is estimated to be between $100 
and $150. The cost of the flexible polyethylene pipe used at Windfarm was $20 
per 100 feet for the 3/4 ID and $60 per 100 feet for the 1-1/4 inch ID (Sears 
1985 Fall/Winter Catalogue).  

Figure 16 shows the force on a 5 foot by 8 inch paddle according to the velocity 
of "slip" or the relative velocity of water to an immersed paddle:  



 
Figure 16: Paddle velocity and force 

Sufficient force to turn the wheel of the Windfarm test pump mounting 1-1/4 
inch coils and pumping to 40 feet is developed with a slip of less than 2.5 feet 
per second. The output of a paddle wheel mounted Wirtz spiral pump would be 
determined by the velocity of the water flow where it was mounted.  

If the river or stream flow was 3.5 feet per second, the paddle wheel mounted 
pump would have a peripheral speed of 1 foot per second or turn at 3 rpm. It 
would then pump 1300 gallons a day to a height of 40 feet. If the flow driving 
the wheel had a speed of 5.5 feet per second, the pump would turn at 9 rpm and 
deliver 3900 gallons a day.  

Paddle wheels turning spiral pumps could be mounted on piles with a provision 
to adjust them to river level changes. They could also be mounted on floating 
pontoons anchored in a river as was demonstrated by the Danish helical pump. 
Another mounting would have paddle wheels with each mounted between a 
pair of arms. The pairs of arms would hang from a horizontal cable extending 



across the current flow. This mounting might be superior as river trash would 
not have piles or floats to foul. Floating trash would strike the paddle wheel and 
swing it upward and down stream on its arms to allow floating trash to pass.  

Building and testing the spiral pump at Windfarm Museum demonstrated that 
the design of the pump allows great latitude. Unlike the test Windfarm pump, 
the innermost coil should be more than one half the radius of the outermost coil 
to limit internal flow over in the spiral and resulting reduced output and 
lowered efficiency. The formulas above can be used to roughly approximate 
coil design.  

Many variations in Wirtz pump construction are possible. Larger and smaller 
diameter tubing could be connected to form a given spiral to provide volume 
changes as water passes from inlet to outlet coils. If the required number of 
coils will not fit in a flat spiral, they could be wound in parallel with two or 
more adjacent coils for each diameter.  

To provide a comparison with similar technology presently in use, the machine 
of Figures 17 and 18 is pictured:  



 
Figure 17: Complex stream driven alternative pump 



 
Figure 18: Complex stream driven alternative pump 

This machine is a piston water pump driven by a paddlewheel. It was 
photographed just after installation in a developing country. In comparison with 
the spiral pump, it appears to be extremely complex.  

As there are no valves or moving parts except for the wheel and the rotary 
fitting, the spiral pump should have a very long service life. After almost 240 
years, the Windfarm Museum tests indicate that the Wirtz spiral pump has a 
renewed future providing water for irrigation, fish farming, village, or home. 

----------------------------------------------    
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Welcome to Wild Water Power!(Best viewed with Microsoft 
Explorer-Or its all over the place) Last updated:  
06/20/07 
  Shown below are my various forms of new hydro power. My first 
attempt was an overshot wheel design with a  
chain drive. My second attempt was a Persian Waterwheel design 



which makes electricity, which I call a Gravity  
Wheel. My last and by far the best, my Pressure Wheel design 
which I am still developing. 
The chain drive Overshot wheel is cheap, but too complicated. 
 Getting the chain onto the wheel was always a  
problem. Even when getting it on perfectly the pressures involved 
were great. This caused wear and tear on the  
system. Pictures of this wheel are on the bottom and in on the 
Picture gallery page. It is probably best to go with a  
gear box. There are a few links on my “contacts” page showing 
wheels that use gear boxes. 
The Gravity wheel is a great design. The flow of the river rotates 
the wheel, which lifts water in buckets which are  
connected to the side. This was inspired by the ancient Norias, or 
Persian water wheels. The difference between  
the Norias and the gravity wheel is just the materials used to build 
it and the water raised is used to run down to a  
turbine, not put on an aqueduct for irrigation. 
My latest design I call a Pressure Wheel. I got the original idea 
from this site: http://aquamor.tripod.com/Wheel. 
htm. I realized that this fellow had created a wonderful water lifting 
devise. It also dawned on me that it has the  
perfect characteristics to garner power off a river. The problem with 
my Gravity wheel design was that of size. To  
create fifty foot of head, you had to make a fifty foot wheel. This is 
not a solution for a homeowner, nor is it all that  
practical for mass production. Using a spiral pump changes all of 
that; it turns rotational movement into pressure. 
My design differs from the Aquamor site since I run the pressurized 
water through a turbine and the pressurized air  
through an air motor. Both of these run one generator. 
 The small one below is for test purposes. It is created out of PVC 
pipe and fiberglass reinforced plastic. It has and  
enclosed system. The fluid is scooped from the reservoir on the 
side; the fluid then goes through the spiral pump,  
which changes the movement of the wheel into pressurized air and 
fluid; that fluid then leaves the wheel through  
the rotating coupling and into the separator tank. From here the air 



goes to an air motor and the fluid through a  
Pelton turbine. The final step is when the fluid leaves the turbine 
and is gravity fed back into the reservoir. 
 For this small prototype I did not spend the money for the turbine 
or air motor, it is for demonstration purposes. 
It takes slow movement and converts it into pressure. How much 
pressure? That is determined by four main factors. 
 
-The size of the Restriction the spiral pump goes into 
-The number of spirals that are in the spiral pump. 
-The inside diameter of the spirals that are in the spiral pump. - 
-The air to water ratio in each spiral. 
 So, what does this get rid of? It gets rid of any type of transmission 
or gearing to make the flow of the river or  
ocean usable. The pressure developed can be run into an off the 
shelf turbine. The wheel and spiral pump are  
made of things you can pick up at your local Hardware Depot .It is 
ridiculously simple, the spiral pump have one  
wearable part, the rotating coupling that allows the pressurized 
water to come out of the wheel .This system can  
be used on overshot, breast and undershot wheels. Traditionally 
overshot wheel have been the true prime movers  
of the Wheel world. But this is now not the case. Large rivers will 
be much easier and cheaper to harness with an  
undershot design. In the ocean there is no limit to how big this 
system can be made. 
Note: Think of it this way, this is not so much a waterwheel as an 
extension of a turbine that allows that turbine to  
harness large quantities of water, without a dam. 
A little about myself. I have an Associated Degree from Denver 
Automotive and Diesel College. I was in the Navy  
for four years working on the electrical systems of F-14's as an 
Aviation Electrician. And I recently graduated from  
the University of Connecticut with an independent study degree in 
the History of Technology. 



Short video explaining the basic concepts that make it  
work. Videos use Quicktime. Please ignore Flash, he  
is a bad boy. 
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I found this one online. It is a spiral pump in its traditional job, raising 
water. I think it is about six foot tall  
(the site does not say), and raises 16 l/min up to 25m ht. That is a lot of 
pressure to lift that high. Even  
though it is very crude, is not floating (one has to wonder what happens 
when the big flood comes) it is  
the largest, heavy duty spiral pump I have found. If this was mine I would 
fit it to not only raise water but  
also produce electricity. It gives an indication of what is possible. One day I 
would like to think of this as  
small. 





 



 
Gravity Wheel-converts the flow of a river into water pressure by 
lifting the  
water; thus creating head. It acts as a huge transformer, changing 
high  
volume-low 
pressure into low volume-high pressure. The problem with this 
design is  
the head created is limited to the size of the wheel itself. 

CHAIN DRIVE OVERSHOT WATERWHEEL- This was 
my first  
waterpower project. It is nine foot in diameter, five foot wide and produces 
1500  
watts with approximately 1000 gallons per minute. The chain drive is much 
more  
complex than a spiral pump setup. The wheel itself is great, it is made of 4x4's  
and used plastic buckets. This is very cheap and I am going to eventually 
retofit  
it to have a spiral pump and turbine. 
 



 





 

PICTURE GALLERY! 

This is not in the video, so take note. I cut three inches from the bottom of the lid. I 
then cut it like you see (yes it is wobbly, but both sides  
match up perfectly),making sure to cut a bit of plastic out underneath where it swings 
(or it will hit and not swing). Then I drill through the  
pieces and the bucket and attach it all with a stainless steel nail, which I then bend. 
The nail is not the only thing holding it on, the lid snaps  
down also. 



I used regular pillow block bearings. They are cheap and last a long time. I am still 
debating the merits of using  
sealed, oil filled bearings. They are a lot more money, but require no maintenance. 
Nor do they need protection from  
splashing water. 
 



 
 
 

This is not in the video, so take note. I cut three inches from the bottom of the lid. I 
then cut it like you see (yes it is wobbly, but both sides  
match up perfectly),making sure to cut a bit of plastic out underneath where it swings 
(or it will hit and not swing). Then I drill through the  
pieces and the bucket and attach it all with a stainless steel nail, which I then bend. 
The nail is not the only thing holding it on, the lid snaps  
down also. 
 



 
I used stone columns to support the flume. It was a lot of hard work, but cheap. They 
cost me one bag of cement per  
column since I had the stone. The easiest way is to use a hand truck with air tires 


