- 1 - MICROFICHE REFERENCE LIBRARY

A project: of Volunteers In Asia

$+$

Proceedings of I AT, D.G. Seminar: Simple Vehicles

 for Developing CountriesInformation Paper No. 3^{3}
Edited by: B. Smith-Boyes and,I.J. Barwell
Published by:
Intermediate Technology Publications, Ltd.
9 King Street
London WC2E 8 HN
United Kingdom
Available from:
Intermediate Technology Publications, Ltd. 9 King Street. London WC2E 8 GN
United Kinğdom
Reproduced by permission of Intermediate
Technology Publications, Ltd.*

Reproduction of this microfiche document in any form is subject to the same restrtethons as those of the orlginal doéument.

Transport Panel

Information Paper 3

Proceedings of IT.D.G. Seminar "Simple Vehicles for Developing Countries"

Information Paper No. 3

Proceedings of an I.T:D.G: Seminar, S
"Simple Vehicles for Developing Countries"
held at
Lanchëster Polytechnic, Coventry
on
June 25 th 1976
edited by
B. Smith-Boyes \& I:J. Barwell

This series of Information Papers is circulated as a means of disseminating information and soliciting comments about the work of the I.T.D.G. Transport Panel. The Panel. welcomes any ideas and suggestions arising from the content 3 of the papers, and these should be fovifarded $40-2$,
I.J. Barwelly*
I.T.D.G. Transport Project officer, coo University of Oxford, Department of Engineering SCience, Parks Road, Oxford, U.K.

(C) Copyright Reserved

Extracts from the text may be reproduced provided the source is acknowledged
I., Session I
1.I Opening Addresś- Lord Oram
I. \quad Introduction: The transport problem in developing \quad I

1. 3 Paper I: Intermediate technology transport in India,

- Chins and the Philippines - I.J. Barwell
I. 4 , First discugsion period
I. 5 Paper. 2: Bicycle marketing in developing countries
- K. Hutcheon

I $\alpha 6$

I. 7 Paper $4:$ Pedal-power ungt for transport and machine use - D.I. Weightman
I. 6 - Paper 5: Simple vepicles in construction - M. Sharrock Second discussion period

2. Session 2

2.I- Paperf 6: Small farm ventole $-R$. Wy elwardene
2.2 Paper 7: SNA
2. 3, Paper 8: The Rfanton and the cellular production system for inghgenous vohicle manufacture - G.A.B. Edwards
2.4. Paper 9: Piageio vohicles for rural transport -
-25 - Paperf Ip: The contribution to be made by British

3. Conclusions
4. Acknowledgements
3. Conclusions
4. Acknowledgements
5. Appendices
5.I Addresses of contributors
5.2 List of participants
I. Sesaion I
J.I Opening Address
by Lord Oram
Intermediate Technology Development Group Ltd. (ITDG)
As Chairman of this morning's session I am happy, on behalf of ITDG, to welcome you to the seminar. ITDG was formed in I965 by a group of engineers, scientists, economists and others from industry and the professions, to provide practical and effective selfi-help techniques for developing countries. Itsquim is to demonstrate and emphasise that aid must be desigmed to help the poor to help themselves. Various major UN conferences in recent months have provided the backdrop to the work of ITDG by strossing the key elements of development strategy to which the intermediate technology concept is directed, namely the generation of employment, the conservation of scarce capital, the use 4. Of local resources, the re-distribution of benefits, the need to reach the poorest of the poor, and the use of appropriate productive techniques.

The ITDG Panels, which now approach twenty-five in number, embrace all the various sectors which were discussed at these international conferences. The Transport Panel, and its sub-panel on simple vehicles, has proved to be one of the most effective of our groups, and we are very conscious of its links with other.aspects of our work, including agriculture, water, power and rural health.

I am particularly pleased to note that this seminar has drawn participants from many fields of activity - manufacturers; academics, representatives of government, and guests from developing countaries a wide spectrum which parallels the individual composition of ITDG Panels.
I. 2 Introduction the Transport Problem in Developing Countries by J.D.G.F. Howe
Associate of Alagtair Diok \& Associates, ahd Chairman, ITDC
Transport Panel
The Transport panel of TTDG is concerned with the application of intermediate teghnology to the transport problems of developing countries, particularly in the poorest sectors. The purpose of the seminar $1 / 8$ to examine what contribution, if any, the institutions of the developed countries, can make towards the design and manufacture of more/appropriate vehicles for rural developing societies. For this reason we have sought to bring together today the pentire spectrum of organisations and individuals involyed in the provision of transport; designers, manufacturers, government agencies, the universities and ald qgencies. Al though initially the intention was to confine the seminar to the U.K. we are fortunate to have with us representatives from the: World Bank and the International

Institute of Tropical Agriculture, Nigeria. It is especialily fitting that Lord Oram, one of the founder members of ITDG, should introduce the seminar.

Until recently the solution' to the rural fransport problems of developing countries has been seen by planners as essentially one of changing the infrastructure with a major emphasis on improving and expanding the road system. Progress is of ten measured in the length of new and improved roads. However since 1969 the Inteinnational Labour Organisation and the International Bank for Reconstruction and Development (World Bank) have been engaged in a major reappraisal of the méthods of building and improving roads, and other civil engineering works, by labour and capital intensive methods. This is not of major concern to this seminar save that an important part of the reappraisal is the examination of the role of simple vehicles in labour-intensive construction. For this reason we have asked Mr. Mark Sharrock of Messrs. Scott, Wilson, Kirkpatrick and Partners to describe the work they have been engaged on in India and elsewhere.

Curlously the efforts to improve the road transport system have concentrated on the route itself: the vehicles have been lef"t to take care of themselves. Possibly one reason/for this is that the people who plan and design road transport systems are inveriably road and not vehicle planners and engineers. It is arguable in fact that the developed world has never, yet, serionsly designed vehicles for the special needs, if there are any, of the developing world (vehicles like the Jeep and the Land Rover have derived from military needs). The well tried and tested strategy is that you produce a vehicle for the home (developed country) market and with the minimum of tropical trim' sell it, also, in the developing world.

However, recent years have seen a spontaneous interes by a number of of institutions in the transport needs of the rural poor of the developing world. With some of the institutions improved transport does not appear to have been the main objective: it has arisen almost as a by product of efforts to mechanise agriculture. Pride of plegee must probably go to the International Rice Research Institute in the Philippines. Another pioneering institution has been the Iŕternational Institute of Tropical Agriculture, Ibadan, Nigeria and we are pleased to welcome to the seminar Dr. Wijewardene of that institute. The Economic and Science Commission for Asia and the Pacific are biso known to be carrying out a study on the improvement of carrying capacity and operational efficiency of rural road transport with particular emphasis on vehicular modes. The ASTRA (Application of Science and Technology in Rural Areas) organisation in Bangalore are also currently engaged on fundamental design studies of bullock carts, of which India has some I2 million, and-pedal-driven vehicles.

More recently the World Bank has launched a programme for the "Development of Appropriate Vehicles for Rural Areas" and we are pleased to welcome two of the key instigators, Dr. Curt Carnemark and Dr. Krish Chopra. Lastly there are the efforts of the Transport Panel of ITDG about which more
will be heard later and which have resulted in the organisation of this seminar.

Undoubtedly these organisations have different motivations for their work, bot there appears to be a general feeling that the existing choice of vehicles is not appropriate to fundamental needs. It is a technical fact that the design of roads in developing countries is dictated by the characteristics of the private car and the lorry. The 'ldesined speed that it is assumed car drivers want dictates the overali horizontal and vertical alignments of the road, whilst the frequency and load carrytng capacity of the lorries that will use it decide the strength of the road's structure. It has never been shown that either or both of these vèhicles is in any sense necessary, much less optimum, for development to take place. The possibility that other, simpler and probably cheaper, vehicles might be more appropriate to needs does not appear to have been given serious consideration hitherto. In one sense this is surprising since, potentially at least, there is the obvious possibility of an economic trade-off between the standard and cost of the road provided and the type of vehicles that will use the route. The simpler, and thus most probably lighter, the vehicle the cheaper the cost of providing an adequate road.

Apart from the institutional reasons already given the most obvious other reason for the little interest shown by the developed countries in vehicle design for the developing world appears to be a misunderstanding about the neture of movement demands. For passenger transport the existing buses and various forms of share taxis probably meet demands very well. But for goods transport the available evidence suggests that the fundamental demand is for the movement of small consignments over relatively short distances, Smallholder agriculture, almost by definition, gives rise to limited crop surpluses and farm inputs. Support for this contention is to be seen in the popularity of buses and taxis for goods movement. Furthermore in some coutiries hand, animal and even bicycle powered vehieles play a significant role in meeting normal transport needs. Ian Barwell will show the extent to which these means have been developed in Asia, a phenomenon which surprisingly is rarely the case in Afrioa. However, as is apparent from Barwell's studies and those of Stuart Wilson of the University of Oxford, despite the ubiquity of the bicycle in the developing world and the wide variety of attempts to adapt. it for load carriage its development in this respect remains mechanically crude. Stuart Wilson will describe an attempt to overcome the fundamental problems associated with the movement of goods by bjcycle.

Asia also provides numerous examples of a simple vehicle technology which is sengibly absent from the rest of the developing worlds the use of simple motorised vehicles based upon motor-cycle technology. Al though this development is flourishing it has been confined, almost exclusively, to urban areas. There have been recent attempts to change this situation by the Honda (Japan), Carabela (Mexico) and Piaggio (Italy) companies and we are pleased to welcome the U.K. representatives of the latter firm to
the seminar.
As mentioned previously a number of institutions haye been working on. the betterment of rural transport indirectly through efforts to improve agricultural mechandsation. The emphasis in these developments is on machines which have a dual agriculture and transport capability, though it is probably fair to say that the agricultural requirements dominate. In this context we are pleésed to welcome Mr. Kilgour of the National Coliege of Agricultural Engineering who will describe the SNALL project, and Mr. Edwards of Trantor International. A further example of dual-mode development is the Pedal Power Unit that will be described by Mr. David Weightman of Lanchester Polytechnic.
Because we wish also to discuss manufacturing and marketing problens we are pleased to receive the contribution of Mr. Edwards on the philosophy underlying the Trantor development and to welcome Mr . Hutcheton of Raleigh Gycles, the largest manufacturer, and exporter of bicycles in the world. Lastly we have asked Mr. Cooley of Lucas Aerospace and Mr. Fletcher of the North-East London Polytechnic to discuss some aspects of the contribution that can be made to the transport problems of deyeloping
countries by $U . K$. industry. countries by U.K. industry.
I. 3 Paper I. Intermediate Transport in India, China and the Philippines - bỳ T.J. . Barwell

ITDG Transport Project Officer

In many countries of the developing world there is a limited choice of methods available for the transport of goods. Often the only alternatives are for people to carry the load on their heads or their backs, or for the cargo to be transported in expensive, imported trucks, cars or buses. These two methods represent, in developing country terms, extremes of transport technology. However, in many Asian countries a number of forms ๑f intermediate transport are available. In these countries simple vehicles are used which, from a technological point of view, span the range between the two extremes of headloading and car or truck. These simple vehicles may conveniently be divided into four categorfes:

> i) hand-drawn vehicles;
> ii) añimal-drawn vehicles;
> iii) pedal-driven vehicles;
> iv) simple motorised vehicles.

The purpose of this paper is to describe some examples of simple vehicles used in India, the Reoples Republic of China and the philippines.
Hand-drawn vehicles
The single-wheeled barrow is widely used in China, particularly in the rural areas where it is suited to use on rough, narrow traoks. The wheelbarrow also plays a crucial role in the labour-intensive construction methods for which China $1 s$ vell known. Figure I shows a typical contemporary wheelbarrow, of wooden construction; and utilising a standard spoked wheel similar to \therefore those used on pedal trisycles. Traditional Chinese wheelbarrows used a much
larger, wooden wheel but the availability of pneumatic tyres has led to a reduction in wheel size. The Chinese wheelbarrow has significant advantages compared with the configuration normally found in the western world. The cargo for placed directly over the wheel, which thus supports most of the load and eases the task of the operator. His work is further facilitated by the use of a strap passing across his shoulders and fid to each of the barrow handles, which assists both in balancing and supporting the load.

The two-wheeled handcart is a common sight in the urban centres of both India and China where it is a basic means of transporting heavy loads over short distances. Figure 2 shows a traditional Indian handcart design, with large diameter, spoke wooden wheels, and a platform constructed from lengths of bamboo, while Figure 3 shows an Indian handcart which utilises motor vehicle wheels. Once again, the availability of a pneumatic tyre has led to a reduction in wheel size. As shown in the photograph the cart is empty and is being pushed one man. When loaded it is pulled by two persons, one on each side of the central shaft.
Handcarts are used to carry prodigious loads; particularly in China where, if the task becomes too onerous for one person; a second, third or even - fourth person may assist roy hauling on leather straps attached to the cart. It is also common practice in China to hoist a crude sail to the cart and -harness some of the energy of the wind when this is blowing in the right direction.

Animal-drawn vehicles
In many parts of the world animal carts and wagons are a traditional means of transporting both goods and people, and can carry considerable loads, albeit slowly. In the Philippines the buffalo, or carabao as it is locally known, is used to haul either a two-wheeled cart or a sled mounted on skids. Figure 4 from China shows a two-wheeled cart draw a by three horses. In India there are in excess of 12 million bullock carts (Figure 5) while in some parts of the same country camels are used to haul four-wheeled wagons. F
Animal-drawn vehicles have an important role to play in intermediate transport, and some work has recently been carried out in Africa to, develop carts which require only basic skillskand tools for their construction (Refs. I \& 2). However there are problems associated with the introduction, of this form of transport to societies which do nat already use and train appropriate animals. The management of livestock, particularly with regard to care and training, is anskill which is not easily acquired. There are a number of examples of unsuccessful attempts to introduce draught animals to people who have not previously utilised this form of power. Failure of
 animate ft is , blestrpent to remember that animals consume fuel in the form of food whether or not they are working. Often the smallholder has to set aside part of his land to grow this food.

Pedal-driven vehicles .

The bicycle is the basic means of personal transport for the common man: in India and China, and bicycles are manufactured in large quantities in
both countries. They are used for urban and rural transport, and for travel into towns and cities from nearby villagqs. The three-wheeled tricycle developed from the bicycle, and sometimes known as a cycle rickshaw, is a common sight in both India and China, though its use is almost exclusively urban and sub-urban. While in India the cycle rickshaw is used mostly for the carriage of passengers, in/China the emphasis is on the transport. of cargo.

Figure 6 shows a cargo-carrying Indian tricycle with two front wheels and a single, driven rear wheel. While this configuration is used in several places the alternative layout of one front wheel and two rear wheels is much more common - Figure 7. shows an Indian example. The limitations of these Indian tricycles are best explained by the following quote:
"The health of Indian cycle rickshaw pullers is adversely affected due
to overwork and heavy strain. Rickshaw pulling is indeed inhuman, but
poverty and unemployment compel poor people to resort to this mode" (Ref. 3) The major reason why rickshaw pulling is such hard work can be clearly seen in Figure 7. The tixicycle retains the same gearing as a conventional bicycle although it may be used to haul up to three times the load. The simple action of fitting a bigger/aprocket to Indian tricycles would greatly improve the lot of the riders. It is also noteworthy that there is no braking system for the rear wheels whach means that a tricycle, carrying possibly three times the load of a bicycle has oniy half its braking capacity. This example illustrates the surprising lack of innovation in the design of tricycles in India, while in contrast the machines used in China show considerable evidence of adaption and fmprovement.

A typical cargo-carrying tricycle from Kwengchow in southern China is shown in Figure 8. The major feature of interest is the use of a chainwheel much smaller than that of a bicycle to give a significantly lower overall gear ratio. Braking of the two rear wheels is accomplished by means of brake blocks mounted on levers which awing out from ote chassis in a horizontal plane and press against the wheel rim when the brake pedal mounted on the frame is operated. Another tricycle found in southern China incorporates a two-speed gearbox operated by a lever mounted on the top frame tube. The primary chain drives an intermediate shaft mounted under the rear bodywork. Two chain drives, of different ratios, connect this shaft to. the rear axle and can be engaged in turn by dog=clutches, thus providing the rider with a choice of two gear ratios. Both rear wheels are braked, by means of standard bicycle brakes mounted on the chassis and actuated by a foot-pedal through a system of rods and bell-cranks.

Perhaps the crudest method of providing a choice of gears is that used on the example from Peking shown in Figure 9. Two chainwheels of different diameters, though both smaller than the size used op bicycles, are mounted. side by side on the pedal axle. To change gear the rider simply has to transfer the chain from one chainwheel to the other. Clearly for this method to work the chain must run very slack. This example also illustrates another interesting design feature. Most tricycles, whether Indian or Chinese, drive through oniy one of the two rear wheels, and thus avoid the need to use a differential in the rear axle. However' the machine in Figure 9 has a solid
axle and both rear wheels are driven. The absence of a differential is mitigated by the use of a narrow rear track. With this configuration both ${ }^{3}$ rear wheels can be braked by means of the single drum brake fitted on the rear axle and actuated by the chain strung from the head-tube. There are a few Chinese tricycles which have an enclosed rear axle with a differential and drive to both rear wheels, each of which has its own cam operated drum brake.

An unusual pedal-driven vehicle from Chengchow is shown in Figure IO. This is a front wheel pedal-drive unit which is attached to a standard twowheeled handcart. The shafts of the handoart are fitted alongside the headtube, and the rear of the unit clamps onto the load platform of the cart. It requires only a few minutes work to attach the drive unit to the handcart or to detach it again.

Simple rotorised vehicles

There are several motorised vehicles in Asia which justify the description of simple. These include three-wheelers of various sizes and capabilities, basic four-wheeled vehicles, and small tractors which perform both agricultural and transport roles.

In Manila there are mechines which consist of a bicycle and sidecar fitted with a 50 cc two-stroke petrol engine driving the rear cycle wheel. The pedal drive is retained and thus the vehicle is best described as being motor-assisted. The sidecar is fitted with a passenger seat but is often used to carry cargo. The three-wheeler shown in Figure II comes from southern China and is used for passenger transport. The driver sits astride a single cylinder petrol engine which drives the rear wheels through a chain-drive transmission. Handlebar steering is employed and the other controls follow motor-cycle practice. Two vehicles of very similar conception are used in India, both based on Italian designs and manufactured locally under licence. The vehicle in the foreground of Figure I2 is of Piaggio origin, while the one in the beckground is Lambretta based. The two examples shown are used to carry fare-paying passengers but several forms of cargo carrying bodywork are also available. Both vehicles rely heavily on motor-scooter technology and use single-cylinder two-stroke petrol engines of about J50cc capacity.

Figure 13 shows a larger and more powerful Indian vehicle based on a twin cylinder Harley Davidson motor cycle. It can carry six passengers in addition to the rider, and is still in use in-India though it is no longer manufactured. The three wheeler shown in Figure I4 comes from China and is considerably 'larger than the previous examples: While they are based on motor-cycle technology this vehicle can be thought of as a simplified truck. The front mounted engine drives the rear wheels through a propeller shaft and the driving position is offset, allowing space for a passenger in the cabin.
When the American forces left the Phillpoines in I. 945 they abandoned a vast stock of surplus war material. This valuable resource was quickly utilised by the enterprising Filipinos, and one of the results of their initiative is the brightly decorated vehicle known as the jeepney. It consists of a
engthened jeep chassis into which can-be fitted a variety of engines. In Manila the jeepneys operate rather like minibuses as a publie transport systä. Outside the cities the -jeeprey of ten carries cargo as well as people, and is frequently seen towing a heavily laden trailer. The use and maintenance of large numbers of these jeepneys over the past thirty years 7 has resulted, in the development of a weal th of mechanical expertise amongst Filipinos. This is one of the reasons why the Asian utility vehicles (AUV's) now being produced by a number of major automotive companies have become popalar there. An AUV consists of standard drive-train assembles (engine, gearbox, etc.) built into a simple rugged chassis onto which can be mounted a variety of basic, easily constructed body shapes. The example shown in. Figure 55 de by Volkswagen, bit Ford, G.M., and Chrysler all make similar vehicles.

Figure 16 shows a Chinese two-wheeled, or single-axle, tractor. These tractors are produced in large numbers and have played a vital role in the mechanisation of Chinese agriculture, being well suited to the small plot cultivation which is common there. The tractor is driven by a single cylinder gkW diesel engine and drive to either one or both of the wheels can be selected, by means of hand controls. In addition to performing an agricultural fole, the tractor can be used as a means, of transport, adde it is in this mode that it is shownin the photograph, attached to a trailefo. Similar tractors are now being manufactured in India and the Philippines.

Conclusions .
There is a wide range of vehicles already in use in developing countries which span the gap between headloading and conventiondl cars, buses and trucks. They form a progression of transport rapability and technical complexity from wheelbarrows through to mot, ised vehicles. Without suggesting ed ther that there are any universal solutions, or that technology is easily transferrable from one continent to another, it is nevertheless striking that while-such vehicles are common in Asia, they are almost totally absent from many other developing countries, notably in Africa.

Hand-drawn and animal-drawn vehicles are traditional in Asia, while pedaldriven and motorised vehicles represent imported technology. There has been only limited eyolution of that technology in the Asian countries and much of the Innovation that has taken place is geographically localised and of ten technically crude. The vehicles based on imported technology are used largely in urban and suburban situations, with only Iimited penetration of pedal-driven and motorised devices into rural areas. This is at least partly because of a lack of vehicles designed to meet rural needs.

References

I. MACPHERSON, G A. First steps in village mechanieation. Dar Es Salaam, I975 (Tanzania' Publishing House).
2. I.T.D.G. Carts. Agricultural Equipment and Tools for Farmers designed for ocal Production. London (I.T. Publications).
3. JAIN, JK. Transport Economics. Allahabad, I973 (Chaitanya Publishing House)
$\varepsilon \cdot 3 \mathrm{~T}$ H

IL. 8 TH

11

OL -8 The

[^0]

I. 4 First Discussion Period

The first discussion period covered four topics; the problems of vehicle and track compatibility, methods of reducing vehicle costs, the need for improved designs of traditional carts, and planning problems associated with the differing requirements of various vehicle types.

It was suggested that the vehicles that Mr. Barwell had shown in use in Asia require a smooth running surface, but that 90% of the roads in developing countries are not to this standard, which precludes the use of such vehicles in many of the-applications for which they appear to be suitable. In reply it was said that all such vehicles could be used on earth roads provided that account was taken of the axle loadings, that lower speeds were accepted, and that, at certain times of the year the roads might not be passable. If such periods âccounted for only a small number of travel days this would not represent a major disadvantage provided that the restriction was accepted.

It was stated that wery fittle work has been carried out into the problems of the tyre/surface interface in relation to small vehicles and that some of the present problems associated with running on earth tracks could possibly be overcome by the use of improved, wheels and tyres. This indicates a need for some practical research into suitable wheel/tyre design for a range of simple vehicles.

The second point raised was that of the cost of purchasing currently available vehicles. It was felt that there are a number of possible ways costs could be reduced by improved design, and by the use of local labour and materials. There exist in many developing countries workshop facilities capable of producing a wide range of finished parts or complete vehicles. Certain machines might require a composite approach using some imported materials or finished assenblies. There is of ten a lack, both of syitable designs readily available to local manufacturers; and of any cenfraty directed organisation to encourage local production. The use of lecal labour would have the dual advantages of creating employment and, hopefully, of providing a cheaper product, thus allowing a wider distribution. It was noted however that for many individuals in rural communities even the cost of a bicycle is prohibitive and represents a major investment. Anything larger would be unobtainable by most individuals and would have to be communally owned if guch, people are to benefi't from an improved road network. This form of ownership is dependent upon the existence of an appropriate community structure.

Bullock carts are extensively used throughout Asia and in some partsp of Africa. Their design however is often less than optimum, having evolved over centuries with, in most cases, no greater tecknical adrance than the ? substitution of traditional wooden wheels by a scratp trick axle and wheels. The effective carrying capacity is generally less than it might be because of the very high dead weight of the vehicle. This represents an enormous waste of available animal power which has only been obtainea by setting aside land, which could otherwise be used to grow crops, to feed the animal. There 1 s considerable scope for improvement in the design of these carts.

The final point raised was the effect on planning procedures of tmplementing a road hierarchy where the different levels of quality are related to different vehicle types. Most planning processes in developing countries have evolved directly from American and European practice and are geared to motor cars and commercial vehicles. The need to adopt more appropriate design standards (and construction methods) is being increasiaglysacepted. The concern of ITDG is to make known the available chofices in order to facflitate selection of solutions most appropriate to particular circumstances A
I. 5 Maper登: Overseas Bicycle Markets by K. Hutcheon,
Technical Director, Raleigh Cycles Ltd.
Overseas Manufacture of Bicycles.
Most developing countries wish to establish their own industries, and bicycle manufacture is an obvious choice. The demand for the product, and the labour-intensive nature of many of the manufacturing operations can cause this to occur by normal economic processes, though it is frequently encouraged by government intervention. Raleigh is in a unique poaition in the world's cycle industry in being the only company which can manufacture almost all its own components, the exceptions being tyres, chains and ball-bearings. It can therefore establish overseas manufacturing plants based upon any selected degree of local content, and this it has done, in India, Malaysia, Nigeria, South Africa, Canada, U.S.A. and elsewhere.

Furthermore the process of manufacturing the bicycle can be transferred. in a progressive way to the overseas factory. The most labour-intensive operations are frame-building, wheel-building and cycle assembly, so starting from.C.K.D. (completely knocked down) activity, the parent factory loses first the frames and the wheels which, as it happens, are buiky and expensive items to ship. Witimately, local manufacture is developed to the extent that only the complex parts such as the lugs, the bottom bracket, and the geared hub are imported. If there were a significant demand for differentials for use in pedal-tricycles, then this is the sort of item that would be produced in the U.K. and exported.

The process of increasing local manufacturing content is occurring. continuously, spurred on both by normal economic pressures, or by government policy expressed in the form of tariffs. Raleigh is currently investing a further $£ 2 \mathrm{~m}$ in Nigeria for the privilege of net supplying rims fromits a Nottingham factory. One problem with the overseas manufacture of bidycles is the need to use locally processed materials, which may not necessarily be to the same standards as those prevailing in the U.K.-

The Use of Bicycles in Developing Countries
It is necessary to meet local design requirements, and many customers in developing countries are very conseryative. They demand bicycles which look the same as those owned by their fathers, and are suspicious of any design
innovations. This is one reason for the preponderance in these countries of bicycles which, in terms of the U.K. market, are old-fashioned. To the Nigerian weight is strength, and the use of stronger, lighter materials is unacceptable. The user in developing countries is usually extremely ingenious and skilled in the art of metal-cutting, bending and joining. He is able to modify his bicycle to any sort of load-carrier by welding and brazing bits on here and there, and his demand is for a sturdy, basic machine to act as a foundation. The basic cycle mechanical parts are an obvious source of components for use in the construction of some special piece of equipment for transport or agricultural purposes, and again the main requirement is for robustness.

Pedal Power compared with Fuel Engines
Using pedal power, the human being can be employed as a prime mover of modest output and low capital cost. This applies particularly to personal transport, since the transportee has nothing else to do. It is worthwhile however, to question whether or not human power should be used for other purposes, such as pumping, when the person might be getting on with something else. Pedal-power çan be compared with a fuet engine in the following way. A typical, modest automobile engine produces approximately 1.5 kW hours per litre of petrol. A human being, working at a steady 0.075 kW , would have to work for 100 hours, that is to gay at. least a fortnight, to equal 5 litres (I gallon) of petrol. The standard of living must'be low for this to be worthwhile. A more basic reason for using human power may well be that no efficient fuel engines exist which have an output in the region of 0.075 kW , or one-hundredth of the output of a car engine, with a proportionally low capital cost. In the case of the internal combustion engine, the reason is bound up with the heat 10 osses from a tiny combystion chamber, and is quite fundamental.

It is possible that the answer lies in the development of a small external combustion engine. If such an engine could bo made as efficient as a car engine, then a powered bicycle could be made which would do over $300 \mathrm{~km} /$ litre, and a power-assisted bicycle might have a fuef consumption of $600 \mathrm{~km} / \mathrm{litre}$. These figures serve to demonstrate that fuel cost, and pollution need not be significant barrier's in either the developed or under-developed worlds. Such a bicycle could have a market at home as well as overseas, and this is a classical requirement for any substantial product.

I. 6 Paper 3: Appropriate Pedal Vehicle Design by S.S. Wilson
 Lecturer in Engineering Science, University of Oxford

Pedal carts and cycle rickshaws are used on a large scale in India, China and S.E. Asia, but are limited in their application to urban use on fairly level roads with a reasonable surface. Even so the strain on the driver is immense at starting, due to the use generayly of a single-speed gear, commonly the same as that of a conventional bicycle, e.g. with a 650 mm
(26in.) wheel, 46-tooth chain wheel and I8-tooth sprocket the gear' is. equivalent to a 1650 mm diameter wheel. This is about optimum for a single rider but quite wrong for a vehicle weighing, with load, perhaps three times as much. Other common deficiencies are inadequate brakes, often on the front wheel only, and the fact that only one rear wheel is driven. The frame, while often quite elaborate, is by no means an optimum structure, even though based on bicycle construction in steel tube.

The first attempt at Oxford to construct a cycle rickshaw is shown in Figure I, and consists of a complete normal bicycle frame attached by two bolts to a rear section carrying two wheels each on a separate half-axle, supported in the same type of ball bearings as used in the normal bottom bracket. The two halves of the chassis, Figure 2, are connected by means of a bolt in place of the rear axle - this withstands torque about a longitudinal axis and a clamp on the small cross tube behind the bottom bracket; this locates the front end of a tension member which forms, with a short vertical strut, a truss to resist bending moment in the chassis.

Each half-axle carries a freewheel and sprocket, the right-hand sprocket having 24 teeth to give a lower gear, and the left-hand sprocket is connected to the other by means of six pins, Figure 3. The effect is that under normal conditions both wheels are driven, but when cornering the inner wheel is driven while the outer one freewheels as it is turning faster. Hence the tricycle will turn corners without skidding but in slippery conditions where, with a normal differential, one wheel slipping dauses complete loss of traction, the twin freewheel arrangement acts like a limited-slip differential in that if one wheel slips the other drives.

The chief deficiencies of this first design were the lack of adequate brakes and the single speed gear; however it served to show the potential for an improved tricycle chassis and led to OXFAM financing a technician to work on a radical new design, the OXTRIKE, Figure 4. The features incorporated in the design include the use of a 3-speed gear, a standard Sturmey-Archer AW wide-ratio type (Figure 5), used as an intermediate gearbox as on a motor cycle; the ratios chosen are equivalent to wheels of 800 mm , 1065 mm , and 1420 mm diameter, which give a distinct improvement, though an even lower ratio is desirable for hill-cilmbing. A further feature is the provision of a powerful foot-brake which acts by means of inboard band brakes (Figure 5) on each rear axle; this can also be used as a parking brake. The same type of rear axle is used as before, to give a differential action.

The chassis is made from sheet steel of I. 6 mm thickness (16 S.W.G. or $1 / 16^{\prime \prime}$), which is readily available in most parts of the world, can be cut by treadle guillotine, folded by hand machines and joined by welding (gas, arc or spot), brazing or rivetting. The backbone of the chassis is a box section formed of two channel sections joined by exposed flanges. Being very stiff and strong in torsion and bending no crossbar is required, which makes mounting and dismounting easy for either sex. The whole chassis can be tipped backwards. to stand upright on the rear end, which is convenient for tipping out the load, for parking in a small space, for inspection and maintenance purposes.

The front wheel and forks are of carrier bicycle type 500 mm diameter; and are therefore very strong, while the rear wheels are 500 mm diameter Raleigh Chopper type, again very strong, particularly against side joad. An ordinary bicycle wheel does not have to fesist side loads, as the rider banks round a curve, but a tricycle or four-wheeled vehicle does impose a side load on the wheels. With its short spokes giving good triangulation the Chopper - wheel is well able to endure such loads.

The intention is that OXTRIKES should be built locally in small workshops from kits of parts, as is common practice in India, where Raleigh subsidiaries supply about 2500 kits each month. The OXTRIKE kit would consist of a set of standard bicycle par'ts' plus a few special components, such as brake - drums and non-standard sprockets, which would be beyond the capacity of small workshops. If need be, some of the sheet metal parts could also be supplied. Two prototypes have been built at Oxford and three by apprentices at the Engineering Industries Training Board at Sheffield. One kit has been sent-to Bangalore in India and there are six more to be, allocated for building efther abroad or in the U. K. From experience gained in building these a decision will be taken as to the best means of future development at. home and abroad. There is already plenty of evidence that OXTRTKES are of interest

- in Africa, India and elsewhere as well as in the U.K., since the chassis can be adapted to so many different uses. So.far only a simple cart body, Figure 6, and a temporary rickshaw, Figure 7, have been built but designs exist for several other bodies, including a proper rickshaw, a multimuse body for carrying two adults facing backwards, three children facing forwards or goods; a box-van body; a hopper body, and a water cart. Further development of the OXTRIKF is hindered at present due to lack of funding.

AIthough the OXTRIKE should meet many transport needs it is clearly not a complete answer, but its scope can be extended in various ways; to extend its effective range in distance or hill-climbing ability one method would be to fit a small engine of the 'Velo-Solex' type, which drives the front wheel by means of a roller; some 7 million of these engines have been built in France, so they can be regarded as fully proved. Another more recent development is that of a hub-mounted electric motor of high efficiency. This was recently announced for bicycle use and has an efficiency of 83%, at cruise conditions of 250 watts, giving a speed on the level of $20 \mathrm{k} . \mathrm{p} . \mathrm{h}$. Maximum nower is about 350 watts (approximately the same as the Velo-Solex) and should enable a hill of I in 20 to be climbed at about IO k.p.h., with pedal assistance. The electric drive is an attractive possibility for regions where hydro-electric power is available, thus avoiding reliance on ofl fuel and reducing the problem of maintenance.

As a radical alternative for rural use on rough, steep or soft ground a design is being evolved which we have termed the Pedal Rover (Figure 8). This is a four-wheel drive vehicle in which each wheel is directly pedalled, so giving four times the power of the OXTRIKE, while the wheels of 1 or I. I m. diameter should give substantially lower rolling resistance than the 500 mm . whers of the OXTRIKE, in rough going. The two halves of the vehicle are articulated at the centre for steering purposes but are also free to
twist, relative to each other so that traversing rough ground imposes no strain on the chasisis dump trucks as used for earth moving adopt the same principle.

Fach half of the vehicle consists of an opendex with a wheel mounted at each side in a semi-circular casing carrying the axle in bearings underneath and a saddle and handlebar on top. The riders sit astride the casing and one has a steering wheel connected by cables and sheaves to the rear half for steering purposes. Several different types of wheel construction are being studied in order to evolve a design which is strong, light, cheap and suitable for local construction; these include spoked wheels, wood and metal, sandwiched construction and thin corrugated sheet steel, The rim will be of channel section to carry strips of rubber cut from old truck tyres, a technique used in Pakistan for farm carts.

It is hoped to construct' a prototype as soon as possible; funds are. being sought to support this development, which would result in a vehicle of great utility for rural use, a natural counterpart of the OXTRIKE for urban and suburban use.
\because

FIG 1 CYCLE RICKSHAW

FIG 3 SIMPLE DIFFERENTIAL WITH TWO FREEWHEELS

FIG 5
REAR AXLE UNIT
WITH 2 FREEWHEELS, . CONNECTING \{UBE
aND BAND BRAKES

FIG 6
OXIRIKE WITH

- CART BODY $-$

7. 7 Paper t 4. Ped al Power Unit for Transport and Machine use
by firWelghtman
becturer In Industrial Design (Transport), Lanchester poivtechinfc
Problem Analysis - Power Sources for Rural Areas in Developing Countries
In rural areas -power sources are needed for simple agricultural machinery such as winnowers, pumps, mills, graters etc. The use of ouch machinery, simple and locally manufactured, can result in appreciable advances ins agricultural productivity. Power can also be used for local transport and small-scale industrial applications a',

The use of human beings and animals as power sources is widespread but the methods used are commonly not efficient. The power, available in this case results from the conversion of food calories by muscular action and so can

- he increased by greater food intake. The effective utilisation of this power can also be increased by the efficient design of machinery. Animal power ais widely used and efficiency could no doubt be increased but application will be restricted to those requiring high torque at low speeds (winches, large mills etc.). In those areas under consideration, the efficient use of the muscle power of human beings affords a most flexible and useful solution.

The maximum power output from a hunan being occurs in a rowing action because most muscle groups in the body are used. However, these outputs are closely approached by those obtained from the legs applied to moving pedals. Little advantage appears to be gained from pedal motions other than simple rotating cranks as on a bicycle (Ref. I) and the use of cranks gives a fairly smooth rotary motion at speeds of $60-80 \mathrm{rev} / \mathrm{min}$. Hand cranking is frequently used but as the arm muscles are smaller than the thighs, power output is reduced. The power output to be expected from normal pedallers is around 0.075 kW . This output can be maintained for 60 mins or more. Higher' outputs can be produced for shorter periods. Due to the poor nutrition levels in developing countries this output is likely to be rather high and a lower figure of 0.06 kW would be more reasonable for continuous pedalling eff static applications, the outputs available tend to be lower than those measured from the performance of cyclists because of the effect of the wind in reducing body temperature. It may prove advantageous to provide fans for pedallers in static c_{j} situations to improve output.

The evolution of the bicycle over the last 100 years hes resulted in the determination of the optimum position for continuous pedalling over a long period. This is the position adopted on the standard 'safety' bicycle-the other positions used by racing cyclists are adopted primarily to reduce wind resistance. Some increase in output can be obtained for short periods by a more horizontal relationship between pedals and saddle; leg muscles can push against a' back-rest and so exert more force. Maintaining the legs in this horizontal position results in the onset of fatigue after a short period, making the normal upright position the best compromise for most uses.

Because the fuel' involved in the use of Pedal Power is food, no irreplaceable fossil fuels/are consumed, with obvious benefits: Although

cycle, seed and fertiliser are transported to the field, crops are grown and processed by IT machinery then produce is transported to market. Similar patterns can be seen in construction or small scale industrial production. The use of pedal power in this dual role is exactly analogous to the use of tractors in European agriculture as poyer sources and transport devices.

The PPU is intended to extend the uti]ity of transport and further work is currently being undertaken by the author to develop the design and, evaluate its feasibility. In terms of uses, the PPU would suit the same pattern of usame as the dymapod but with the beriefit of this additional use to amortise cost more quickly.

To summarise the methods of use described above:
i) The utility of bicycles is limited to a number of specific applications such as electricity generation, winnowing fans and certain types of pump, due to the problems of adaption.
ii) If the potential use of the bicycle as a power source was taken into account at the initial design stage, then this dual use could be accomodated satisfactorily as wellas other design changes to enable local manufacture.
iii) Fitting pedal drive directly to the machine enables optimisation of that particular application and is most suitable for machines which are in constant use or communally owned and hired.
iv) The dynapod is a feasible solutiof for communal ownership when a number of machines can be operated in turn, or for a farmer with a range of machines.
v) The PPU is equally suitable when operating a number of machines but is more economically. feasible for an indiyidual farmer due to its capability as"a transporrt device.

Pedal Power Unit Desinn Proposal
The PPU comprises a frame with a wheel mounted in forks. The wheel is driven by pedal cranks and a chain fitted to the forks and a saddle is fitted to the frame. For transport applications, the unit is connected to a two-wheel
. Chassis ank so forms the driven front wheel of the tricycle. The two-wheel chassis is usable independently as a handcart. A sub-frame fitted to the forks carries a secondary chain and laskhaft driven from the wheel, for use as a power-take-off. This subframe pivots on the wheel axle and acts as a stand to ralse the wheel off the ground, enabling the power-take-off to be used whether or not the unit is fixed to the rear chassis (Figs. $1 \& 2$).

The primary drive train consists of a 46 tooth pedal sprocket with a 3 mm (者in) chain driving a 24 . tooth wheel sprocket. This gives a lower gearing than a standard bicycle, to be suitable for load carrying. The wheel consists of a
layshaft via the secondary chain. The layshaft is a standard bracket axle with provision at each end for power-talke-off. The chains are tensioned by jockey pulley or by môving the PTO axle housing in a slotted hole.

With the gearing arrangement described above the power-take-off speed will be $150 \mathrm{rev} / \mathrm{min}$ at norial pedalling rates. By substitution of different sprocket sizes in the secondary chain this can be varied. If the SturmeyArcher hub is fitted, this will give speeds of $112 / I 50 / 200 \mathrm{rev} / \mathrm{min}$ and gives a convenient means of altering ratios. Because the road wheel drives the secondary chain gystem, it is used as a flywheel for power smoothing and enables the road brake to be used as a machine brake.

At one end of the layshaf is fitted a threaded block to attach the secondary chain spfocket with an extension collar onto which a take-off shaft can be fitted. This shaft can be used to connect two pedal power units together or to drive machinery. On the onposite end of the layshaft is a similar block with provision for attaching, either a pulley shaft or chain sprocket to provide drive for machinery. The shaft used for interconnection would be semi-flexible (e.g. bamboo or GRP tube) to overcome alignment problems.

It is envisaged that the unit will use standard bicycle parts for bearings, pedals etc. with a fabricated metal frame. A motorcycle type steering head is used for ease of construction but it may be possible to substitute a carrier bicycle fork, Standard frame pressings can be used for bracket axles if available. The main frame is designed to be fabricated from mild steel sheet folded into rectangular section tubbes. A number of other construction procedures can be used, including fabrication from stock tubes etc. The most suitable method will be determined by ${ }^{*}$ local conditions.

For transport use, the anit is connected to a two-wheel ohissis to form a front-wheel-drive tricycle. The chassis is designed to be used independently as a handcart. Connetion between the two sections is made at three points. These are the two rear feet of the unit and the top of the handle member on the chassis. The feet locate in lugs on the chassis and a clamp would connect the chassis hande to a bracket on the unit frame just behind the saddle. As long as the dimensional constraints of the attachment points, vehicle geometry and the requirements of structural strength and stiffness are satisfied, a great variety of chassis designs are possible. These range from wooden structures with fabricated wheels developed from local cart practice tolmetal frame chassis using avallable ready-made wheels. The designed payload is I50kg. Two chassis designs are illustrated (Figs. 3 \&:4) in the model photographs. One uses Raleigh Chopper wheels in a light tubular space-frame, which supports the wheel axies at each side as normal. The other is designed to be fabricated from steel sheet and uses light motor car or motorcycle sidecar wheels on stub axles. The vehicle has a wheelbase of 1300 mm and a track of 1200 mm with ground clearance below the chassis of 200 mm . The ground clearance can be easily varied in the chassis design to suit operating conditions.

A number of body types can be fitted to the chassis for different uses. The standard body would comprise a platform and two angled sides forming wheel
mudguards. This gives a platform size of 1050 mm x 750 mm for loads up to 150 kg . A seat can be fitted on the sides to carry two passengers with space for luggage underneath the seat. The seat would dismantle to form the front and tailgate of a boxtrailer for goods carriage. A folding canvas hood can be fitted for weather protection in both applications. For tipping, the front of the vehicle can be lifted, plyotting above the back wheels. Alternatively a removable skip can be fitted for bulk transport. For'particular applications other bodies can be used e.g. tanks for water carrlage (up to 170 litres).

Motor assistance by means of a small two-stroke engine can also be employed. Although a further refinement, this fllustrates the flexibility of the deaign. The engine would be fitted to the front fork, driving the wheel through the secondary chain system. This gives a moped arrangement, using the pedals to start the engine. 1.5-2.0kW engines would give speeds of $30 \mathrm{k} . \mathrm{p} . \mathrm{h}$. for the fully laden vehicle on level ground. Greater speeds would require a stronger chassis and much improved brakes so are not advisable: Such an arrangement would be an intermediate stage between pedal driven and conventional motorised vehicles.

Postscript

Since the proposals described above were designed, consideration of bicycle manufacturing methods appropriate for developing countries has led to a variation of the PPU concept. Traditional bicycle manufacture relies on the assembly of high quality steel tube into complex cast or pressed lugged joints and although this results in a light frame, the production of the frame components is a capital intensive operation. For developing countries, frame construction based on box sections fabricated from stock steel sheet would be more appropriate. The use of unit bearings, suitable also for a wide range of machinery, would also simplify hub and erank construction. If such a reappraisal of bicycle construction is undertaken to evolve appropriate manufacturing methods, it would also be sensible to produce a different design of bicycle for developing countries, based on the patitern of use. This bicycle would be designed to carry loads of up to 75 kg . or one passenger, in safety, dictating a longer wheel base with smaller wheels. Additionally, the bicycle would have a power-take-off to drive machinery, thus performing a similar function to the PPU. The bicycle could tow a trailer or could be converted into a tricycle by the addition of a driven rear axle with brakes and differential unit, similar to the Oxtrike (see Paper 3).

A bicycle design similar to that outlined above, though not intended for developing countries, has been produced by the author and Ian Barwell. Having won the Melchett Memorial Award for the design, prototype construction is underway. Many features of the deaign would be applicable to developing countries although the general configuration would have to be modified. It is hoped to explore the possibility of extending the application of this design to developing countries and such a re-design of the bieycle would complement the development of the PPU and dynapod concepts in extending the number of ways in which pedal power can be exploited in developing countries.

References

I. WHitT, FR, and D G WILSON. Blcycling scierice: ergonomics and mechanics. Cambriage (Mass), 1974 (MIT Press).
2. WEIGHMMAN, D W. Pedal power unit for transport and machine applications in developing countries. Lanchester Poly. I976. (mimeographed).

Appendix: Existing or possible Machinery and Designs using Pedal Power or suitable for Conversion.

Main source of information is ITDG "Tools for Agriculture - a buyers guide to low-cost agricultural implements" 2nd. edition, ITDG publications 1976. Numbers refer to, codes pred in the catalogue, with country of origin. Short number codes refer to page numbers in Ist. edition of catalogue: Initials refer to designers or sources of information:

SW - Stuart Wilson, Department of Engineering Science, Oxford University
AW - University of Dar-es-Salaam
WE - ITDG Workshop
RM - Robert Mann, NCAE, Silsoe

Machine Type	Măchines using pedal drive	Machines suittable for conversion (with existing drive method)
I. Agriculture		
Pupps	Automatic pump (SW) Chinese dragon tooth pump (SW)	```Climax (UK.053H.01) hand Godwin (UK.053H.05) hand Howl (053H.13) hand Cossul (India.053H.03) 2-man hand```
Maize Shellers	Hunts Cobmaster (UK.071H1.09)	Allied (071H1.01) hand CeCoCo (Japan 071H1.02) hand Cossul (India 071H1.03) hañd Hznts Atfas (UK 071H1.05) hand Blanch (UK 073.07) Alvan Blanch hand
Rotary Cleaners:		$\begin{aligned} & \text { Siscoma (Senegal } 073.08) \\ & \text { hand } \end{aligned}$
Grinding Mills	Atlas Mini Mill (SW)	CeCoCo (Japan 091H.01) hand Gaubert (France 09IH.02) hand \qquad Diamant (Denmark 09IH.03) hand Atlas (UK 091H.04) hand Dunia (Kenya 091H.06) hand Amuda (India 091P.09) electric motor

Corn Crushers		Renson \& Cie (France 091月.06) hand
Cereal Breaker	-	CeCoCo (Japan 095.01) hand
Chaff Cutter		Dandekar (India 092.04), hand Hunts (IK.092.05) hand Johnson Silex (Souith Africa 092.06) hand A jantz (India 092.08) hand Rajasthan (India 092.09) hand Mohunder (India 071H1.04) Renson \& Cie (France 071P1.07) electric motor
Groundnut Decorticators	¢	Dandekar (India 071H2.01) hand Hudsons (India 071H2.03) foot treadle Siscoma (Senegal 071H2.06) hand
Threshers	Akshat (India 07H3.01) Cossul (India 071H3.03) Aplos Doring (Germany, 63) VITA design Malaysian design (RM)	```CeCoCo (Japan 071H3.02) foot treadle Midget, }5 Cossul (India 62)```
Winnowing Fans	Akshat (India 07H3.01) Cossul (India 071H3.03)	
Winnowing Machines	NCAE design (RM)	```CeCoÇo (Japan 073.01) hand Hudsons (India 073.02) electric motor Hunts (UK 073.03) hand Rajasthan (India 073.04.) hand Rensons & Cie (France 092.12) hand```
Bootcutter		```CeCoCo (Japan 092.03) hand or motor *: Rensons &. Cie (France Q92.11) electric motor```
Coffee Hullers		Gordon (UK 094.08) hand
		Bentall (IIK 094.02) hand Gordon (JK 094.12) hand \& (094.06) hand McKinnon (uK 094.12) hand \& (094.13) hand

Palm Nut Crackers		Harrap Wilkinson (UK 094.01) hand Vome (65) Rapid (66)
Rice Hullers	\sim	CeCoCo (Japan 094.01) hand, 2man . Gordon (UK 094.04) hand
Rice Polishers	$\because \quad:$	CeCoCo (Japan 094.03) hand
Cane Squeezers	\%8:	CeCoCo (Japan 094.01) hand
Cassava Graters	ITDG design (WE)	,
Winch Plough	French ${ }^{\text {design (SW) }}$	- . .
2. Industrial Machines		\% 1
Electrical Generator	Design (SW) using bicycle \& ailternator	
Winch	Design (SW)	
Forge-blower	Zambian design (TTDG)	7
Air compressor		
Bandsaw,	-	¢.
Fretsaw	\cdots	$\stackrel{\square}{2}$
La.the		
Pillar Drill	,	$\cdots{ }^{\circ}$
Grindstone		

Fig. I

Fig. 2

Fig. 3

Fig. 4
I. 8 Paper 5: SimpleVehicles in Labour-Intensive Civil Construction by M. Sharrock
Messrs. Scott, Wilson, Kirkpatrick \& partners
(Note: Although programmed, this paper was not presented at the Seminar, due to the unavoidable absence of the author.)

The work described in this paper has been carried out as a part of the TBRD (World Bank) study of the Substitution of Labour and Equipment in Civil Construction. This is a continuing programme to investigate the prospects'for appropriate technologies to employ productively the unemployed or underemployed labour in developing countries. In these countries the extent of completed civil works such as roads, irrigation canals, dams, reservoirs, river control works etc. is of course to a large degree a measure of the development attained by the countries and these projects form a significant part of lending by international agencies. A large proportion, perhaps as much as half, of these investments is accounted for by earthworks tresks of various kinds, and the transportation of earth and locally produced construction materials such as stone aggregates over relatively short distances is usually the single most important activity within such tasks, in terms of expenditure.

Hatulage of earth and stone construction materials has therefore been one of the main areas of investigation in the Labour Substitution study. The investigations have consisted of work study.measurements of forty or more ongoing construction projects in India and Indonesia, together with experimental field work, and processing and analysis of the collected data. This experience has shom that these haulage activities are characterised by haul distances from a few metres to several kilometres, the most common dịstances for earthmoving being tens of metres to hundreds of metres, whilst for movement of stone, distances over a kilometre are most frequent. Earthmoving takes place over the rather poor surfaces of temporgry haul routes usually, but when longer distances are involved quarries or borrow pits may well be sited to allow use of available permanent roads.

Haulage Methods
A great variety of haulage methods are employed in construction work. In India for example, at the labour-intensive end of the spectrum, earth and stone products are carried in shoulder pans, headbaskets, yoked baskets, and in carts drawn by mules, horses, oxen and camels. Agricultural tractors with two wheel tipping or non-tipping trallers are sometimes employed, $\bar{\pi}$ and the use of trucks, both tipping and flatbed, is quite fommori: In addition to these methods, a wide range of heavy, western style earthmoving equipment is to be found, usually on very large projects. However it is now recognised from the resurts of the study that labour and animal based methods can be fully competitive in terms of direct cost with the latter. machine-intensive methods. It may be noted that where this holds in India, the typical unskilled daily wage during the construction seasoris about US $\$ 0.5$, and piece-workers earn up to US\$I, or even US\$2, exceptionally.

When efficiently organised the labour and animal based haulage modes have a definite pattern of application. With reference to Indian conditions, manual load carrying is the most competitive for short hauls, for short to medium distances the beast of burden is used, for medium hauls the animal drawn cart and finally, on long hauls, trucks give the lowest unirt cost. (Unlike China, which is perhaps even better known for labour based construction, in India wheelbarrows do not feature seriously in the existing construction scene at all.) On examination of this, pattern it is seen that the size of the load carried in each mode of haulage correlates well with the appropriate haulage distance, as indicated in Table.I.
+

. Method	$\begin{gathered} \text { Typical Load } \\ (\mathrm{kg}) \end{gathered}$	Preferréd Haul Distance (m)
Headbasket, yoked basket Donkey, mule Camiel Mule eart, ox cart, camel cart Truck	$\begin{array}{r} 35 \\ 100-150 \\ 4400 \\ 500-1000 \\ 4000 \end{array}$	$\begin{gathered} \because \quad 0-75 \\ 50-250 \\ 200-400 \\ 200-600 \\ 500 \text { upwards } \end{gathered}$

Table I: Correlation between haulage method ptypical load carried, and preferred haul distance

The evidence for the existence of this pattern is extensive; and suggests strongly that the major role in contruction work for simple vehicles capable of carrying loads from perhaps 100 kg to I tonne is the haulage of materials oyer distances from about 50 m to around Ikm. Two such vehicles are the wheelbarrow and the animal drawn cart. Although it is well-known historically that these have been eftployed in earthmoving, little quantitative information has been avallable even though their use has continued up to the present in some parts of the world. However, some success has been obtained during the Labour Substitution study with wheel"barrows developed for earthmoving tasks and a reasonable amount of

- productivity data arrd background information relating to wheelbarrows is now being assessed. In India the use of animal drawn oarts for earthmoving has been developed to a very efficient level by petty contractors from particular areas, and as a result of observations' at several sites some progress cart now be made in analysing this mode of haulage also. Literature studies have been made on human ergonomics and the work output of animals (Refs. I \& 2) and work is continuing on the analyais of wheel barrow and animal based haulage methods (Refs. 3 \& 4). Some of the inityal findings in these areas are discussed briefly in the following sections.

The Work Output of Men and Animals.
The physiology of man, and of the mamals used for work purposes is generally similar. It is thought therefore that the following discussion of the work output of men in relation to construction activities should serve to illustrate principles applying also to animals, However some data
on the work output of animals will also be referred to.
a $1 t$ can be helpful, in thinking about man-powered devices, to regard a man as a prime mover capable under ideal conditions of developing roughly 60 watts of power over an extended period. This figure of 60 watts can be arrived at in several ways. For example, it is widely recognised that an \therefore 'average' western man has the ability to convert food into energy at a rate of about $5 \mathrm{kcal} / \mathrm{min}$. Approximately Ikcal/min of this is required to sustain life processes, leaving $l_{4} k c a l / m i n$ for physical activities. Not much more than a fifth of this remainder can appear as useful external work, due oto the level of efficiency of the energy conversion process and of the humán mechanism. Hence, converting to the standard unit for power, an output of 60 watts can be postulated for activities utilising a substantial portion of the body's musculature. This quantity is meant to be comparable with the brake horsepower figure for a vehicle, it may be noted.

This simple view is useful to set a perspective for man-powered machines. In civil construction and other heavy work, particular factors to consider are - as follows:
i) The body has a certain reserve capacity of energy which enables greatly increased power outputs to be sustained for short pēripds - up to perhaps ten times for a period of the order of seconds, but double or treble the 'continuous' rating may frequently be developed for minutes at a time in heavy manual work.
ii) When the reserve capacity is used up by heavy work, rest is essential so that replenishment of the energy reserve can take place. The higher the maximúm work rate, the more frequently rest is required. The overall work output falls somewhat when frequent short peaks of effort are made, compared with a continuous steady effort.
iii) The work output (and necessarily the food intake) of workers habitually engaged in manual work is likely to be higher than that of the 'average' man, for the same body weight.

Thus in constfuction haulage activities, since the haulage process is essentially cyclic in nature, with a relatively demanding haul-laden period alternating with a haul-unladen period during which rest can be taken, the rate of working is cyclic̣also, Brief periods of high power output of the order of a minute or so, alternate with rest periods. In making comparison with continuous effort such as long distance haulage of goods, or much agricultural work, the cyclic nature of construction haulage must be considered carefully.
: Characteristics of Wheelbarrow and Almal Cart Haulage
Experience indicates that barrows and carts are very sensitive to gradient and cannot negotiate long slopes of more than 4 or 5% when running on good earth'surfaces carrying their normal short-haul loads. This is a consequence of their low-power-to-weight ratio. A 'ball park' value for the operative power-to-weight ratio of laden carts and bartows is suggested in Table 2 , compiled on the basis of informed guesswork, where the b.h.p. to gross weight ratio apnears to be in the region of $0.6 \mathrm{~kW} /$ tonne, for short-hanl work.

Haul Method	Weight (tonne)				Short Period Power Output kW	Power to Weight ratio $\mathrm{kW} /$ tonne
	Hauler	Viehicle	Load	Total		
Wheel barrow	$\therefore 0.055^{\circ}$	$\bigcirc 0.03$	0.1	0.185	. 12	.65
Mule Cartf	0.4	0,	0.8	- I. 7.	- 9	.53.
Camel Cart	0.7	0.6	I. 0	2.3	1.5	*. 65

Table 2: Power-to-weight ratio of laden carts and barrows

Special measures such as provision of ramps, use of extra haulers or arrangements for winch assistance are necessary where slopes have to be climbed if a considerable reduction in payload is not to be suffered. In view of the low power-to-weight ratio it is important that rolling resistance is mínimised. It seems likely that rolling resistance commonly amounts to $4-5 \%$, given a good earth surface and well inflated smooth pnematic tyres. Any marked increase in this value has a serious influence: on ability to climb slopes with a useful payload. In Indian practice, where a rise of more than I to 2 metres occurs in a short haul, animals carrying panniers are generally used in preference to carts, nq doubt because their superior climbing ability makes them more economic in these circumstances.

Animal carts used for earthmoving, although similar to road-going carts are specially constructed for the earthmoving task, as follows:
i) The harnessing arrangement of enables the cart to be partially or completely tipped to speed the unloading process.
ii) Pneumatic tyres are used - either ADV (Animal Drawn Vehicle) tyres or truck tyres, the tread may be ground off to give a smooth round profile.
iii) The body has shallow sides or a simple flat platform to make hand loading as easy as possible.
These carts are produced by very small soale manufacturers. Where some advanced technology components such as tyres and roller bearings are employed, used secondhand parts are generally fitted. The body and much of the chassis is of wooden construction. The major reason for fitting pneumatic tyres to these carts is probably that conventional narrow wooden or metal wheels are at a particular disadvantage on earth surfaces because they cause a rapid deterioration of the running surface, with consequent increase of rolling resistance due to deep rutts and deep layers of dust. Tables 3 \& 4 give typical details of animals and earthmoving carts.

	Speed $\mathrm{km} / \mathrm{hr}$	Typical kg	Cart Purchase Price US $\$$	Typical Tyre Size	Chassis Life yrs
Mule Cart	$3-4.5$	800	I30	$6-$ I9 6PR	5
0x Cart	$2-3.5$	I500	I30	$6-$ I9 ILPR	5
Camel Cart	$3-5$	I000	I70	$9-20 ;$ IOPR	5

Table 3; Characteristics of animal drawn earthmoving carts

Table 4: Characteristics of draught animals

Some forty wheelbarrows of different types have been used in extensive field work during the study. These have been of five basic patterns:
i) Two-wheeled barrows
.ii) U.K. style single wheel
iii) Chinese style large diameter single wheel
(iv) Swedish style single wheel
v) U.K. body pattern modified for large diameter single wheel.

The types of wheel used have included small cycle wheels, scooter wheels, motorcycle wheels, wheels with solid rubber tyres and all-metal wheels, running on wooden' planks, beaten, earth, or steel pipe. Load capacity has varied from $60-200 \mathrm{~kg}$. Generally all-metal construction has been used and this seems to be justified by the long working life which can be achieved, bearing in mind that equipment used in civil construction has to be of a very robust character. It has been found that wheelbarrows are superior to headbasket haulage beyond about 30 m haul distance, and are a viable alternative to animal haulage methods up to perhaps 200m. Generally pneumatic tyre single wheel barrows are to be preferred. Some of the reasons for this choice are as follows. It is seldom possible to obtain a completely smooth running surface, and pneumatic tyres cause considerably less strain for the hauler than the steel or solid rubber type. A good wheel is an expensive item and has to be fairly heavily made to withstand the working conditions, therefore the fact that a single wheel barrow is lighter and cheaper than a two wheel barrow is a significant point. For the range of gradients and running surfaces commonly encountered, the load which can be carried is not high enough to cause balancing problems to an extent which would justify use of two wheels. Preparation of barrow runs is also simplified for single wheel barrows. For hauls longer than NOm a large diameter wheel and greater load capacity as exemplified by the Chinese style barrow is most effective, providing gradients are minimal. Particular circumstances can lead to alternative choices, it should be noted. For example, very good results have been achieved with a metal wheel running on a single steel tube rail; and where the position of a haul route does not have, to change frequently this system could be most economical. As another example, for winching heavy loads up long steep slopes the better stability of a two wheel barrow might well be essential.

References

1. INTFRNATIONAL BANK FOR RFCONSTRUCTION \& DEVELOPMENT. A literature review of the ergonomics of labour-intensive civil construction. World

Bank Study of the Substitution of Labour \& Equipment in Civil Construction, Technical Memorandum No. II. Washington, I975 (IBRD).
2. INTYRNATIONAL BANK FOR RECONSTRUCTION \& DEVEIOPMENT. A literature review of the work output of animals with particular reference to their use in civil construction. World Bank Study of the Substitution of Labour \& Equiphent in Civil construction, Technical Memorandum No. 2I. Washington, I976 (IBRD).
3. INTERNATIONAL BANK FOR RECONSTRUCTION \& DEVELOPMENT. The use of wheelbarrows in civil construction. World Bank Study of the Substitution of Labour \& Equipment in Civil Construction, Technical Memorandum No. I3. Washington, I975 (IBRD).
4. INTPRNATIONAL BANK FOR RECONSTRUCTION \& DEVELOPNENT. Haulage using animals in civil construction. World Bank Study of the Substitution of Labour \& Equipment in Civii Construction, Technical Memorandum (Forthcoming), Washington, (IBRD).
Note: The above papers may be obtained from:

> Transportation \& Urban Projects Department, International Bank for Reconstruction \& Development, I8I8 H Street NW, Washington DC 20433 , United States of America.

I. 9 Second Discussion Period

The discussion centred on the suitability of current bicycle designs to the needs of developing countries; in the U.K. the cost of a bicycle is approximately one week's wages, but for most people in developing countries it represents several months' earnings. It was suggested that there is a need to develop bicycle designs which could be locally manufactured by small scale enterprises at a low unit cost, utilising imported materials and components only when suitable substitutes are not locally avallable. It was noted that, in additior to the activity outlined in Mr. Wilson's paper work is in progress, under the direction of Messrs. Franchi and Vegoda, on a new bicycle design which might meet many of these criteria, and which would require only a very limited number of imported components. Participants were cautioned that it is dangerous to assume that all developing countries have the same requirements since conditions, and the availability of skills and resources, vary greatly from one place to another,

The discussion moved on briefly to the methods by which ideas could be

- transmitted to areas of need. It was noted that ITDG is able to work effectively with industrialists in this capacity through its two subsidiarles, the Industrial Liaison Unit and Development Techniques Ltd., who have already undertaken a number of successful projects where such collaboration was involved.

2.1 Paper 6: Small Farm Vehicle

by R. Wijewardene
International Institute of Tropical Agriculture, Nigeria
(This summary of Dr. Wijewardene's presentation, which included a film and slide series, and the subsequent discussion has been prepared by the editors.)

Dr. Wijewardene's presentation described the development, some six years ago, of a Small Farm Vehicle (S.F.V.). The work began with a survey carried out in Malaysia, which showed that between 70 and 80% of the population were engaged in agricultural activity, and that something of the order of 70% of that activity involved transport. It therefore appeared that appropriate designs of self-moving vehicles for agricultural use were of the utriost importance and could have far reaching effects for a substantial proportion of the population. The conventional farm tractors were not considered appropriate since they are in essence a mechanised replacement for the horse. Their design stemmed from the assumption that the system of farming, based on the use of draught animals, was fixed.
The approach which was adopted was to define the peak labour demands involved in tropical agriculture and to apply modern technology to those demands. The technology had to be of simple form in order to make it both accessible and attractive to the farmers. The result of this work was the S.F.V. The design requirements for the vehicle were that;
i) it should sell for no more than US\# 1500 (I97I prices);
ii) it should be able to negotiate ditches and swamps;
iii it should have a high level of manoeuvrability;
iv) a number of implements could easily be atitached;
v) it could be used as basic transport vehicle.

The design that evolved had ${ }^{\circ}$ four wheel-drive, each wheel being independently driven. This enabled steering to be achieved simply by differential wheel
it speeds, thus ailowing very high manoeuvrability with a minimum of mechanical components. Power was provided from an TIkw petrol engine which was also successfully operated on methanol, thereby removing the necessity for an ignition system.

The vehicle had a re-inforced plastic/plywood sandwich shell which formed an integral body/chassis. A modern image was presented in order to make the vehicle compatible with current automotive designs. This was considered necessary so that farmers would not consider that they were buying a second-class product while the urban dweller got the best. Very low pressure ($0.16 \mathrm{~kg} / \mathrm{sq}$. om.) balloon section tyres were used so that ditches and swamps could be negotiated, and this proved to be very successful. However the latest thinking is that better performance can be achieved using very large diameter tyres with special treads which cut a track through the soft mud to bite on the harder ground below.

Work is currentily centred on producing a viabolectrically powered vehicle, but there is still a considerable amount of further development required before such a device becomes a practical farming machine.

Discussion
In the discussion that followed various points were raised relating to tyres and wheels. It was stated that a further advantage of large diameter wheels was that it was easier to regotiate rough ground both because of the angle of the tyre to obstacles, and because of the greater ground clearance which could be achieved.

In discussing the power requirements of agricultural activities, Dr. Wijewardene stated that many of the ploughing tasks could be eliminated by greater use of mulching. Were this to be done then total vehicle power requirements could be substantially reduced (perhaps to 4 kw) since it is the ploughing operation which uses the most power. This approach would greatly increase the utility of two-wheeled tractors driving a variety of implements.

Illustrations (following page)
Figure I. Skows the S.F.V. with the seat removed. The engine, body/chassis unit and parts of the transmission system oan be seen.
Figure 2. Shows the S.F. H being used as a transporter.
\qquad impléments attached.

-8T而

N

2.2 Paper 7: SNATL Transport

by C. Crossley, J. Kilgour \& J. Morris
National College of Agricultural Engineering, Silsoe
Technical Considerations
The SNAIL is a simple tractive device designed for manufacture and use in developing countries. One of the problems facing many farmers is the need to cultivate the soil at the end of the dry season to allow the planting of crops at the optimum time to obtain a good yield at harvest. At the time of the year the farmer wishes to do the cultivation the soil is very hard, and neither hand nor animal techníques are very effective, so the farmer usually waits until the first rains. This results in a late planting date, leading to reduced yields. The farmer does not have a large enough holding to be able to afford or use effectively a conventional tractor. Attempts have been made to provide a small tractor but for a 8 number of reasons this lis not technically feasible. A possible solution is the SNAIL.

The SNAIL cultivating system consists of a motorised-self-propelled winch which can be anchored to the ground with a sprag. A modified ox-type plough is pulled towards the winch by a wire rope. Two men are required, one to drive the winch, the other to drive the plough. The operation is as follows. The implement is placed in the field where cultivation is to start, the wire rope is attached and the winch is driven across the field unwinding the rope. When the rope is fully extended or at the end of the field the driver disengages the wheels and engages the winch drive. As soon as the rope starts to wind in, the sprag enters the ground anchoring the winch firmly. When the implement is pulled up to the winch the drive is disconnected and the wingh is driven off again unwinding the rope to start the next cycle. In this way it is possible to use a small engine to pull a large load without the problems of wheel, slip and weight for traction.

A number of prototype machines working on this principle have been built and tested in Malawi under an ODM Researich Scheme (Refs. I \& 2). An economic study was hade in I975 (Ref. 3). This showed that the machine is technically capable of primary and secondary cultivation of an 8.1 Ha holding (20 acres) but economically less attractive with the particular design due to the high estimated production costs at the time.

By re-arranging the components, and adding a pair of wheels and a box the machine can be made into a self-propelled trailer. The trailer body is I, 700 mm long, 1000 mm wide and 480 mm high. It is fitted with two 400×8 tyres and is capable of carrying a 300 kg payload at a maximum travel speed on the flat of 7.2 k. pah. (Fig. I). At full engine power on a hard surface it can negotiate a I in 3.5 slope.

Smallholder farming systems vary to suit the natural conditions as do the yields that the farmer can expect. Such a machine is most likely to be introduced in the government development areas where marketing, credit and extension facilities are available. Three major farming situations have
been selected for the purpose of evaluating the appropriateness of the SNAIL system (same situations as used in Ref. 3) as a transport device. Table I shows the area under the principal crops in these-situations. Table 2 shows the quantities to be transported in $\mathrm{kg} / \mathrm{ha}$ for the principal crops. The quantities to be transported before harvest are small and are igriored in the following analysis. It is assumed that the farmers will wish to transport all the yield to market.

The transport distances can vary considerably depending on the distance between the garden and the household; where it is assumed cleaning, processing and storage takes place, resulting in an average 33% loss in weight; and between the household and the local market where the crop is sold. Of the range of distances quoted for the land development areas a distance of 0.8 km from garden to household (1.6 km return journey) and 6.4 km from household to market (12.8 km return journey.) has been taken for the analysis. The travel speed of the transport has been taken at $3.6 \mathrm{k} . \mathrm{p} . \mathrm{h}$. (half the maximum) to allow for loading and unloading twice and unknown delays. The fuel consumption has been calculated on the basis that the engine is working at 50% of maximum power (de-rated for Lilongwe altitude and ambient temperature) and for the particular engine used is $0.58 \mathrm{~kg} / \mathrm{hr}$.

Table 3 shows the transport requirement for the crop harvest for garden to household and household to market. The number of hours taken and the fuel used is quoted for the 'average' yield and for the 'best' yield expected by the more progressive farmers.

The harvest time is at the end of the rains and for the crops listed occurs during March, April and May, the precise time depending on the timing, duration and intensity of the raing for the particular year. There is a considerable labour peak at this time of year and in the three cases considered of ten a labour deficit. (Ref 3). This will probably mean that some of the crop will be harvested late and consequently be of lower value or lost entirely. In the worst situation the farmer will have to spend about six days on crop transport from the garden to the household. With head porterage as the major transport method, transporting accounts for a large proportion of the total harvesting labour requirement. Since a reasonable head load is $10-20 \mathrm{~kg}$ for a long distance and $40-50 \mathrm{~kg}$ for a short distance with a maximum travel speed of 4.8 k . p.h. this will take the one man approximately eight times longer than SNAIL transport from garden to household. Uaing the SNAIL transport system may well avoid the labour defficit at this time, so enabling all the crop to be harvested at the optimum time.

Transport from the household to the market takes considerably longer, even though the quantities of the final product are less; due to the longer distances involved. This is likely to take place during the early part of the dry season when there is little or no work to do on the land, so it would seem that up to thirty days taken on transport would not present a time problem. This is the time of year when people travel socially so this activity may not be considered as juat a chore.

From this simple analysis it would seem that the SNAIL transport system could be technically satisfactory for these situations.

Economic Considerations

Generally, transport and communications are bothycostly and problefatic in developing countries. For the peasant farmer, frocessing inputs and marketing produce is of ter seriously constrained by inadequate transport infrastructure. Where improved transport services are available, they are often prohibitively expensive. Accordingly, smallholder agricultural schemes emphasise the importance of improfing rural transport facilities.

At present in Malawi, feet, bicycies, of-carts and buses provide the main methods of transport for smallholders (Refs. 5, 6.\& 7). Smallholder casht spending on transport is low, saccounting for an average 6% of farm expenditure (K 1 per holding in 1968) (Ref. 8) and, as mentioned earlier, most transporting of marketable produce in Malawi is performed post harvest by low opportunity cost labour. One recent smallholder transport, survey (Ref. 4) estimated that of householders selling produce outside the area under consideration', 70% camied i by foot and I 3% by bicycle.

Estimating costs for alternative smalliolder transport methods in developing countries is difficult both because few such transport stydes have been attempted and because smallholder transport methods do not always lend themselves to conventional costing exercises, particularly ; where otherwise unemployed family labour represents the major component of the transport system.

Costs of transport vary considerably between commodity types, transport methods and distances covered. The figures of a 1972 survey showed the costs of head porterage in Malawi ranging from KO. 18 to K 10.19 per tonne k ilometre over distances ranging from 0.4 km to 6.4 km , average 2.6 km . Average ox-cart distances were 2 km ., the greatest distance being 4 km . and costs ranged from K1. 16 to K 1.83 per tonne kilometre. Pick-up trucks were copsidered to have the cost advantage over distances greater than 4.8 km , costs per tonne kilometre being KO .55 . Qver short hauls of I .6 km pick-up truck costs were equivalent to K3.23 per tonne kilometre. Observing the increasing popularity of ox-carts which are relatively inexpensive to purchase and have negligible operating costs', the survey considered that ox transport would take over as the most important short haul mode of conveyance. At present, however, only 5% of Malawi farmers possess work oxen.

In recent years, the smallholder agricultural development schemes, recognising the importance of readily available transpont in encouraging farmer marketing responge, have provided tractor/trailer transport to peasant farmers at various level's of subsidisation. For fexample, Lilongwe Land Development Programme, Central Malaw, collects and carts to market the produce of those farmers who participate in the scheme's credit packages. The charge for transport, at K0. 30 per bag for maize (equivalent to K3. 24 per tonne or K0.6I per tonne kilometre) is deducted together with charges for seeds, sprays, fertilisers and credit, from the farmer's revenue at the point of delivery to market.

The SNATI, transport method is considered to offer an alternative transport mode for short to medium (6.5 km) distance hauls: Engine powered transport devices, however small, are expensive to purchase and operate. A major advantage of the SNAIL transport system is that because the power unit is primarily used as a cultivation device, the major part of the annual fixed costs are attributable to field work activities. The multipurpose aspect of the machine allows fixed costs to be spread amongst different operations. The fixed cost proportion absorbed by transport activities will depend on the relative importance, in terms of annual working hours, of the transport activity. In the farm situations quoted earlier it is estimated that the fixed cost percentage allocated to transport is of the order of $20-30 \%$.

SNAIL Costs
The estimated purchase price of a SNAIL manufactured in Malawi (1975) is K1500. Assuming alife of five years the annual fixed costs of ownership are estimated at $K 410$. The hourly operating costs of repairs and maintenance, fuel and oil total KO .87 , excluding labour. Working its annual maximum of 8.1 hectares involves SNAIL in an estimated 600-700 operating hours. The time spent on transport is considered as a fraction of this latter figure to derive a share of fixed costs attributable to transport.

An examination of the costs of SNAIL transport (Table 4) reveals an approximate cost of K 3 per tonne kilometre excluding labour. "Relative to existing alternatives, particularly the use of ox-carts, the SNAIL appears expensive. The major reasons for the machine's high costs are its considerable annual fixed costs ($K 400$ compared with $K 80$ for a complete oxen and equipment team) and its slow rate of work (capacity x speed) relative to other motorised transport forms. In examining farmer transport requirements, examples are based on 1 hectare holdings, as this represents the feasonal capacity of the SNAIL cultivation device. In many developing countries average holdings are much smaller than this. In Malawi average holdjeg size is $I .52$ hectares, only 2% of holdings being above 5 hectares. On small holdings the SNAIL device is difficult to justify, the costs of ownership and use being prohibitively high.
Using SNATL in the transport mode as a substitute for head porterage, considerably reduces the labour requirement for harvesting and marketing transportation. Improving labour productivity and easing labour bottlenecks during the harvesting period can be particularly important. in realising the potential yield increases from better inputs and husbandry practices during the production year. In Malawi, due to the marked unifodal rainfall distribution, the farming calendar is characterised by a period of intense agricultural activity (November-April) after which crops are marketed during the subsequent dry period. During this latter period, labour is underemployed and has very little opportunity cost and no premium for timely marketing is offered to farmers. Generally, transport to market proceeds at a leisurely pace. Where dopble cropping is possible, however, and the opportunity cost of employing labour in transportation
is considerable, the SNAIL device could prove a valuable transport asset, particularly where farmers arerewarded for timely marketing. In a similar vein, where the opportunity costs of keeping oxen on the land are high, the use of a small, engine powered device such as SNAIL becomes more attractive.

It is in situations where the hidden costs of traditional hand or animal powered transport technology are high that small, engine-powered transport devices prove most beneficial.

D References

I. CROSSLEY, C P, and J KILGOUR. The SNATT in Malawi. WoridiCrops, I974, 26 (4), I70-2.
 National College of Agricultural Engineering, Qccasional Paper No. I.

- Silsoe, I973 (N.C.A.E.)..

3. MORRIS, J. A financial econome feasibility study of SNAIL in Malawion I975 (N.C.A.E.).
4. ANON. Agricultural produce transportation survey. Chikwawa Cotton Development Programme, Malawi, I974.
5. AGRO-ECONOMTC SURVEYS. The town markets of Lilongwe. Agro-Economic Surveys Report No. I4. Malawi, I974.
6. AGRO-ECONOMTC SURVEYS and NATIONAL STATISTICAL OFFICE. Zomba town market survey 1970-I971. Malawi, I97I.
7. AGRO-ECONOMIC SURVEYS. Marketing of ${ }^{\text {s }}$ smallholder produce in Malawi. AgróEconomic Surveys Report No. I6. Malawi, 1975.
8. NATIONAL STATISTICAL OFFICE. National sample survey of agriculture 68/69. Malawi, I970: (National Statistical Office).

Fig. I
－steçaəfeu sutptinq asnóq pue

－	\％	［ ，	motreat
$0 E^{\circ} 5$	．		20¢¢
O2．1	${ }^{2}$	－	＊enessej
3	59＊0		＊unyigos
1	$98^{\circ} 7$		\cdots U07702
18.0		18.0	$\square \quad \operatorname{ses} \mathrm{Tn}_{\mathrm{d}}$
\cdots	4	－ $29^{\circ} 1$	opoeqod
\cdots	$=91.0$	$29^{\circ} 1$	sqnupunoxy
$18^{\circ} 0$	－$\varepsilon 7 \cdot 2$	－ 50.7	əZ！̣セ¢
ш上eg boty equoler	шиен 以о770 EMEMYTYJ	ambuotut	$\mathrm{EH} / \mathrm{dox}_{0}$

095	LOOL	80LT	${ }^{2068}$	188.	E96	－，tワで	7088	78 ag	
677	¢દE	29¢E	neटl	Oでし	－ 677	095	6001	$\bullet \triangle \mathrm{V}$	ptoyesno ${ }^{\text {c }}$
688	EISt	190 L	MTOS	8892	彻碞	ટ̧EE •	2027	$17 \text { seg }$	Plouasnoh
IL9．	E0S	THOS	$\therefore 6781$	\％ 1891	LL9	$6 \varepsilon 8$	EISI	－\triangle \＃	uәрхея
	\because	\cdots		\therefore			88		－7sna mudx
			L19			OS2	052	\bigcirc	xestithxas
$95 / 8.91$	$0 \quad \therefore$.		99	$1 E / 5 己$	06／49	$\begin{gathered} \text { poqueqdsuex } \\ \text { LLO:O } \end{gathered}$	99／9．72		\because spars
sestnd	20JJ00	$\frac{\text { fpped }_{i}}{\partial}$	рə Juب̣eg	407700.	s7nupunozy	－оэевоб	2zț\％		凹ə71

己＊ $6 \varepsilon 1$	$26:$		＊		$2 \cdot S 己$	$76 \cdot 7 \varepsilon$				7seg s[e7ou
$9 \cdot 69$	96	－，		－－	98.21	$7 L \cdot L L$		1.	．	${ }^{*} \Lambda^{\prime} V$
		－${ }^{\text {崖 }}=$	S					，1		$750 g$ ． $59{ }^{\circ} \mathrm{O}$
							．			
$\varepsilon \cdot L L$	$L \cdot 90!$	$78 \varepsilon^{\circ}$	OE	2746	$1 \cdot 7!$	$5 * 61$	$7{ }^{\circ} \mathrm{OL}$	－ 77	E90EL	7599 98．7
$7{ }^{\circ} 97$	－ 79	$7{ }^{\circ}$ OEZ	$\therefore 81$.	ETTS	$L \cdot 8$	己し	己＊$\varepsilon 7$	$\angle 己$	－0LL8．	A A
$19^{\circ} \mathrm{C}$	$9^{\circ} \cdot$	8° 己	1	751	$2 E^{\circ} 0$	$77^{\circ} \mathrm{O}$	9°	\downarrow	$L E 己$	7səg 91．0
$19^{\circ} 2$	$9^{\circ} \cdot$	8＊21	t	2L	$己 \varepsilon^{*} 0$	$77^{\circ} 0$	$9^{\circ} 1$	1	LOI	－ $\boldsymbol{\wedge} \boldsymbol{V}$
－ 65	8＊ 48	7×162	$\varepsilon 2$	8089	$1.8{ }^{\circ} \mathrm{OL}$	51	$7 \cdot 7.5$	$7 \mathcal{L}$	1.201	7sag \quad ¢ 7° Z
$9^{\circ} \mathrm{OZ}$	$7 \cdot 82$	$7020 i$	8	$2 S H 2$	$78{ }^{\circ}$	と＊ら．	$2 \cdot 6$	己1	9L9	$\cdots \mathrm{B}$＇
s．axt！T	sxnoH	－Wप्र әourfsta	sfoumo	$\begin{gathered} .8 x \\ 7-Y X E W \end{gathered}$	Səエ7 ti	－	－ШШึ	s¢oumo 1	－ 8 H ptoyasnoh	$*$
－		［е70山	fo sequnN	əsnoh	TЗМд		TEqO山	FO．XəQumN		－EH／doxa

＊Subsistence crop
4
＊Subsistence crop

$8^{\circ} \mathrm{LLL}$	E ST\％				でと建	$8 \cdot 57$	4 \％			
L0＇L9	$5 \cdot 26$				$10^{\circ} \mathrm{ZL}$	$6 \varepsilon \cdot L 1$				
－ $1 \cdot 251$	8．602	2•S¢L	65	618 LL	L－82	$9 \cdot 6 \varepsilon$	70271	68	とEL9己	7sag $\begin{array}{r}\text { EOTG }\end{array}$
L．95	ご8L	9＊182	22	0759	59001	$L \cdot T \downarrow$	$8 \cdot 25$	をદ	0086	－\triangle V
Si．S	$L^{\circ} \mathrm{L}$	$9 \cdot 52$	2.	77^{7}	$76^{\circ} 0$	$E \cdot 1$	$8 \cdot 7$	ε	669	$7^{7 s e g} \frac{18^{\circ} 0}{\operatorname{ses} T^{2}}$
$19^{\circ} 2$	$9^{\bullet} \varepsilon$	8：21	1	798	$79^{\circ} 0$	68.0	${ }_{\sim}^{2 \cdot \varepsilon}$	己	775	－\triangle \％
$9{ }^{\circ} \mathrm{Oz}$	．7＊82	$7 \cdot 201$	8	OLZC	$S S \cdot \varepsilon$	$6 \cdot 7$	$9 \cdot 21$	11.	7078	$\begin{aligned} 7 \text { seg } & 18^{\circ} 0 \\ & 2 z+\mathrm{CBW}^{2} \end{aligned}$
． $9 L^{\circ} \mathrm{L}$	L－OL	$7 \times 8 \varepsilon$	ε	LL8	$\varepsilon \cdot L$	$8^{\circ} \mathrm{L}$	$7 \cdot 9$	7	5221	
saxq！t ［כn\＃	s ［noH	－Шயㅍ－ วอนย7s！̣ ［セ70世	s＾əurnor Jo Iəqumn $_{N}$		saxitt torng	s．xnot	－सम् จoueqs！ct ［e7ow	sRourno Jo Jəqumin n	$-8 y$ ptoyasnoн of uәprey	EH／do．${ }^{\text {d }}$

$\varepsilon \cdot \varepsilon$

2.3 Paper 8: The TRANTOR and the Cellular Production System for Indigenous Vehicle Manufacture

by G.A.B. Edwards

Trantor International Ltd.
Part I: The TRANTOR Project as an Industrialisation Package
General Strategy
The TRANTOR is a general purpose work vehicle and it has been designed and built in Britain. It enters a market which is curfently satisfied by the makers of tractors, Land Rover-type vehicles and lorries and trucks up to about 8 tonnes. The combined world population and future market for all the vehicles in these categories produced by Massey-Ferguson, Toyota, General Motors, Fiat, Ford and others is so large that by obtaining 1% of the market, the TRANTOR project would achieve great success. For example, $=800,000$ tractors are produced and sold each year.

The product is particularly noteworthy becague of its wide range of general. uses and our policy is to ensure that an appropriate TRANTOR is seen, tested and thoroughly examined in each of the countries and regions of, the world where production may be established or the vehicle used. If a country is beginning to establish its own motor vehicle industry then TRANTOR manufacturing and assembly ought to be included in the most basic needs of the nation concerned because of its use as a car, tractor, truck and lorry. TRANTORS plough and take the full range of farming equipment. The trailing, capacity is 10 tonnes with unbalanced trallers, and the vehicle, which has an integral safety cab, can cruise at $80 \mathrm{k} . \mathrm{p} . \mathrm{h}$. TRANTORS operating as rural buses; with appropriate trailers, can carry up to thirty people. They include Category 2 tractor linkage equipment.
The primary aim of the TRANTOR project is to provide all countries of the world with a motor industry which they will largely own and operate and which will satisfy the home market and provide an export potential. Because 8 . TRANTORS can act as passenger cars, trucks and tractors, the project helps the developing country conserve its scarce capital resources. It allows such nations to use their limited resources in other more productive investments elsewhere - for example, the vast range of agricultural equipment needed for efficient food production. The attractions of the TRANTOR project to developing nations also extend to the minimisation of use of foreign currency reserves because TRANTORS are designed to be manufactured, not just assembled in the country concerned. A further basic principle is the way in which the TRANTOR project can be used topetend the range and increase the rate of industrialisation by teaching, in a specially designed training school, the wide range of skills required, which include painting, welding, drilling, milling, turning, grinding and boring.

A Policy for a Collaborative Associátion

When entering negotiations in a 'new' country, collaboration with Britain usually begins from government agencies, private manufacturing and selling businesses, business consultants, development authorities, agricultural and
transport specialists and those currently working in motor and agricultural 6 engineering.

In ald cases it is important to:
i) make arrangements for a vehicle to be hired or sold for demonstration and test under local conditions
ii) conduct feasibility studies concerning the potential in home and nelghbouring export markets; the skills available to build TRANTORS and to assess the rate. and the stage by stage process of factory building (i.e. assembly, manufacturing of chassis, simple skill working, complex skill working). It is necessary also to assess the various details
of the product design which would best satisfy the market. Various alternative component supply sources, with costs delivered to site need to be considered. Factory location, land availability and plans for after-sales service all need to be examined as part of the feasibility studies.
Our organisation offers this whole service, from its fechnical staff led by Stuart Taylor, TRANTOR's designer; through to its work organisåtion (Group Technology) consultants léd by Dr. Pierre Schmitt of France. The work of these consultants is well known in the field of work organisation. Our consultants have been pioneers in this new field of work groups and have advised, amongst others, Platt (Saco-Lowe11), Dunlop, British Oxygen, Knorr-Bremse, Ferranti, fank Xerox and Tube Investments (Matrix). Oúr advisory work has always concerned the way in which these large, labour-intensive firms should develop in future to increase their productivity, ifprove their delivery, reduce their work-in-progress and develop their management and labour relations style to meet the need and changes of the day.

Our whole policy is to offer a complete turn-key operation for any cointry wishing to have its own motor vehicle industry based partly or wholly or even firstiy on TRANTORS. The following information is available:
I. A I2 minute colour film of the TRANTOR vehicle

2 A colour brochure in English, French and Arabic
3 A TRANTOR product specification
4 An outline proposal for setting up TRANPOR factories
5. A list of bought-out components with detailed part specification (Many alternative engines, electrical equipment and general bought-out parts are available from many different countries)
6 A minimum building specification
7 The fixed capitil equipment needed to make TRANTORS at about 20 per week
8 The training school equipment needed for full and complete training in TRANTOR manufacturing and assembly
9 A draft legal contract/letter of intent in respect of the factory proposal
IO A suggested stage by stage process leading from TRANTOR assembly and chassís manufacture to complete manufacture over a range of different periods from one to five years (Appendix,

In addition there is a scale model of the nlant, designed for Nigeria; which
can be seen at our Stockport (JK) offices. All drawings, jig and tool destgns and special fixture drawings can be seen at Stockport. Production vehicles began to be produced in January I977 and can be seen in the course of construction. Twelve prototypes can be viewed in different applications. of particular interest are the TRANTOR assembly work groups, the rear axle subassembly group and the transmission work group, as well as chassis manufacture and panel assembly.
Part 2. The Despign and Manufacturing Strategy
The TRANTOR project conducted firstly at Manchester University and then at Bradford University Management Centre concerns a new type of agricultural. transport and work vehicle, which is designed in a new way to embrace the new kind of small group production system of manufacture and assembly. An unusually practice-centred. University research team led by the author originatef:-
 The work concerned with the design of the organisation of work was conducted byTEdwards and Taylor with the assistance of the former's research team, "which received its support from the Science Research Cbuncil.

There are two problems which prevent developing countries from successfully producing their own vehicles and, in general; they have, up to date, only assembled such products. These; products which have been assembled have usually been fundamentally designed for the requirements of the western world. The requirement of the developing countries' home market invariably however, is for a more functional, harder wearling, more durable product than that designed for the west. Top speed and accelegration may be important to the market of the United States but itis the ease with which a leaf spring can be replaced or the strength of the front bumper which are of ten more important to a developing country. 'A product which is designed for the environment of the western world is also depdgned so that it can easily be produced within relatively advanced western production systems. Vehicle products are usually made on a mass production basis in large batches (manufacture) and on flow lines in assembly. They are invariably buitt in targe plants employing. several thousand people and they are situated in heavily populated areas. Thése factories require enormous amounts of capital investment before the first production machine flows from the line and they usually demand large home markets and well-established servicing networks to be economically successful. Developing countries ate generally short of capital, for which there are many competing demands. Reveloping countries usually have smaller centres of population and insufficient skīled and semi-skilled labour in one centre to support a large plant.

Any regional development planning, which is such a vital feature of planned industrialisation, requires that small pockets of industrial factory practice be made available in region after region. The TRANTOR project is a serious attempt to design a new product and a new kind of factory unit which considers regional planning, minimum capital, durable products etg its fundamental constraints. We have tried to begin here at a new kind of beginning for the developing nations.

The fundamental specification of the product was drawn up following a two-year study by W.S.H. Taylor of the transport requirements in agriculture and where
tractors Áre used in rural areas, for forestry and in other general work tasks. The TRANTOR has been designed to carry out virtually all the tasks and operate with the same attachments as the conventional agricultural tractor. It can, however', be driven light at speeds up to $90 \mathrm{k} . \mathrm{p} . \mathrm{h}$. and it can also haul trailer loads of up to 8 tonnes at speeds of $55 \mathrm{k} . \mathrm{p} . \mathrm{h}$. As stated earlier, it spans three markets, each of which is conventionally supplied by a different product and it, therefore, competes against the agricultural tractor, general purpose vehioles (such as the Land Rover)- and small commerial lorries. The home market in some developing countries may be small for any one of these three products but for the TRANTOR that market size would be considerably increased. The multi-purpose nature of the vehicle can significantly reduce the capitai cost to owners (individual or collective) whotwould need only a TRANTOR instead of a car, a lorry, a Land Rover and a Tractor α PRANPORS are competitively priced and cost a little more than the conventional tractor of a similar horsepower.

Whe product design has been carefully considered from the point offiew of the economics of low quantity production (smallness) and the factory design was a second but vital step in the same direction. There are, for example, no high quantity machining requirements for any of those parts which are designed specially for the TRANTOR and which would be manufactured in the factory. Adl such parts can be produced with simple, inexpensive capital equipment in the form of eagily available simple machine toóls and spegially designed Jigs and tools. Whioh designing the production system for the TRANTOR it was clear that it would pave to be produced economically in low quantities and that each TRANTOR fagtory would need to prove its economic viability where the number of employees would be about 100-150. At such a size the output of each plant is about 1000 units per year and if the magket demand in a particular country, or région, becomes greater than this number it needs to be suffteiently viable if its usage of capital and give sufficient returns . for it to be possible to duplicate the plant in another region of the countryis 4.

The oasic ydea is that the plant should be small and efficient but clearly the restriction of 100 to 150 persons could be adjusted to suit prevailing circumstances. The designers of the factory are fingly of the view that the cost and ease with which the factory can be controlled and managed are vital to the success of the venture and hence the increase in employees has connotations other than those of more production. The fdea of the small plant offers other advantages, such as the coupling of after-sales service directly to the factory.
As a result of the decision to produce a small factory with the technology designed to suit the economics of smallness the capital required (fiked and working) before the first production machine comes out of the door is proportionately reduced. The capital requirement is further reduced by using only 'standard', 'off the shelf', machine tools throughout the whole plant and not relying on any expensive apecial-purpose machinery.

It is the design of the tooling which is crucial to the success of smallness and our work group approach follows the principles of Group Technology. It is necessary to begin to manufacture with a low skill reguirement and in our TRANTOR factory each man needs only to be trained to operate one machine before the, plant commences operation. Our special tooling, jigs and fixtures
have reduced the depth of skill required to handle each machine and so the initial start-up training time la minimised. This does not prevent each. operator acquiring a broader knowledge of several different machine tools because he is able, as production gets under way, to move from machine to machine and widen his abilities and skill.

The inevitable question must be asked "how can a small plant produce a vehicular product competitive in price to stmilar products mass-produced at over twenty times the rate?" It is clear that to machine components in batches of 400 per week is usually accepted as being cheaper per component than machining in batches of 20 per week. TRANTOR manufacture is organised on a group technology basis which considers all the machined components in the, plant and groups them into families which have similar machining requirements. It is then possible, because one is dealing with groups of similar components, to set up groups of machine tools with associated jigs, tools and fixtures so that the time taken to change from one family member to another is virtually the same as if they were the same components. As each family can contain anything up to ififty similar components, it is soon possible to substantially increase the effective batch size and, reduce the cost per component. Because the TRANTOR has been specifically designed for this type of manufacture it has been possible, at the component design stage, to consider the komponent family and to standardise on features common in the family, such as hole diameters, tolerances and material.

The TRANOR project may thus be said to offer an unconventional alternative. technology whose many aspects would prove useful in coping with the needs of countries in the third world. It does so by combining the most advanced practices in production with a belief in 'scaling down' for ease of access and control, and providing a product that can meet the special need characteristics of those who work and ilive in rural town and villages.

Appendix

A feature of the TRANTOR project is to offer MANUFACTURE, where most of the skills lie, and assembly and the whole project is geared to the idea of assisting, a developing country in widening and extending its skill base by offering simple fitting skills and simple machining skilis like drilling, but also offering skilled boring and precision turning. In order to satisfy this dual requirement, factories for TRANTORS come in a series of 'staged packages' with a tailor made training school to meet the needs of each stage. The whole factory consists of I7 self-contained work groups each of which employs about 8 people. Each work grolup has its own particular skills, jigs, inspectrion facilities, raw materials and machines. Each work group requires different training school equipment and meeds a different time duration for training. A developing country may decide to build the whole factory (four stages) at once, or to stagger them over, a few years. In order to build the complete factory of 17 work groups, the land required $1 \mathrm{~s} 9,000 \mathrm{sq} . \mathrm{m}_{\mathrm{A}}$, , with the buildings covering 4,500 sq.m. The training school, which is specified to meet the requirements of a particular factory, includes the capital equipment for all four stages, and it too can gome in a series of stages.

A brief description of the four stages of the factory is as follows:

Work Groups
17.16.15.14. I3.T2.II.IO. 9.

Approx. Number of Workers
chassis assembly, and servicing of TRANTORS

STAGE II Chassis member welding assembly, accurate welding assembly, panel manufacture

STAGE JII Simple turning and drilling, profile cutting of plate, sawing, drilling stamping \& bending

- STAGE IV Gear cutting \& hardening, precision 4.5. I5 machining.

The TRANTOR

2.4 Paper 9: Piageio Vehicles for Rural Transport

by K. Salt
Managing Director, Andrews Lawn Edgers Lta. (U.K. Agents, Piaggio \mathcal{C},
Commercial Vehicles)
The Piaggio company was founded in Italy in 1884 , specialising in the outfitting of ships, Over the years the company expanded in size and diversified into the manufacture of railway rolling stock and aeroplanes. Following the disruption of the second world war the company developed the very successful range of Vespa motor scooters. Soon after thoscooter went into production the company introduced a three-wheeled van, the Vespa Commercial, derived from it. This vehicle quickly became an important means of light transport in southern Italy, and from this beginning a range of three-wheeled commercial vehicles have been evolved which, in addition to their popularity in southern Europe, are now built under licence and used in a number of developing countries, particularly in Asia. Over 600,000 Vespa three-wheelers are now in daily use in more than twenty countries.

The, smallest of the current range is the Ciao Porter, which is based on the rear end of a 50 cc . Ciao moped, including the engine and transmission, but with two Ackermann steered front wheels with a cargo box mounted between. them. This machine thas a payload of 100 kg . At the other end of the scale is the Ape 'cax' which has a 217 cc . engine mounted between the rear wheels, a comfortable cab with seating for two, and a payload of 600kg. . .

Andrews Lawn Edgers Ltd. are now sole U.K. agents for Vespa Commercial Vehicles and are currently importing two models. The vg200 (Fig I) has a single cylinder 50cc. two-stroke petrol engine mounted between the rear wheels, and runs on a low-octane petrol and 2% oil mixture. It has an enclosed cab with central handlebar steering, and is available with either pick-up or van bodywork. It is of very rugged construction, well-suited to off road use, where its four speed gearbox enables it to climb a in 4 gradient. The three-wheeled layout endows the vehicle with a high degree of manoevrability (it can out-turn even a London taxi), and the machine offers a low cost form of off-the-road transport with a fuel consumption of approximately $35 \mathrm{k} . \mathrm{p} .1$. Its payload is 200 kg . Likely applications of the vehicle are on parks, estates and airfields, and in warehouses and factories,

The VC 600 (Fig 2) shares the same basic layout as the VC 200 but is a larger vehicle with a I87cc. single cylinder two-stroke engine. Like the VC 200 it is rugged, highly manoevrable, performs well in difficult off-road conditions and has minimum maintenance requirement. It has can enclosed cab and a choice of steering by handlebar from a central position, or by wheel from an offset position, allowing a passenger to be carried. It is available with either pick-up or van bodywork and has a payload of 600 kg . Work is well advanced with getting this machine certified for road use*.

* Homologation certification has now been completed and the VC600 will be available for licenced use from June pnwards.
and in this mode ithas many applications for use by tradesmen and local delivery services. In addition to its manoevrability it offers low purchase cost and minimal running costs since its fuel consumption is up to 20k.p.l. and servicing is both simple and cheap.

With the cost of operating vehicles escalating rapidly in the U.K. the Andrews-Piaggio range of three-wheelers offer economical transport with many applications. This feature, together with the simplicity of maintenance and the ability to operate in offroad conditions suggest that the se vehicles have many potential uses in both urban and rural areas of developing countries.

Fig. 1

Fig. 2
2.5 Paper 10: The Contribution to be made by British Industry by M. Coóley
Stentor Design Engineer, Lucas Aerospace Ltd., and R. Fletcher 8 2 Principal Lecturer in Design, North-East London Polytechnic
(This is a summary, prepared by the editors, of the presentation by the two speakers)

There is in British industry a continuing process of mechanisation which often leads to the displacement of skilled personnel. Such people have up to now been allowed no involvement in decisions as, to what products their company should make, or how they should be manufactured. Within the Lucas group of companies a comittee was established with the aim of achieving the right of employees to work on socially useful products. An assessment was made of the skills available within the group, and the way in which these skills were being employed. From this information, and with the overall aim in mind, the committee produced an alternative corporate plan for the company which proposed a number of possible new products. From this list of products six were selected for detailed analysis and design work.

One of these products is a hybrid vehicle with potential applications in many developing countries, designed to run on both normal metalled roadways and on steel rails. This requires a system of flange-less guidance to avoid the weight and cost penalties of having two separate wheel systems -this has been the limitation of all previous road/rail vehicles. Using the expertise available at Lucas in the fields of electronics, internal combustion engine performance and electrio motors and generators, and in conjunction with North-East London Polytechnic, a IO-wheeled vehicle has been designed with the following major features. Power is provided by an internal combustion engine with re-cycled exhaust, running at constant speed for maximum output efficiency. This drives a generator which feeds a nower-pack. There is Ackermann steering on the front four wheels for road use, whilst in the rail mode guidance is achieved using the tread forces in the tyres and a track-sensing mechanism actuating a steering servo. A prototype has been built and was successfully tested in early 1976 on standard gauge track in Sussex.

The object of the vehicle is to provide a flexible means of transport producing a minimum of pollution without recourse to overhead transmission cables or de-toxing equipment. The vehicle is primarily intended for rural use in areas with existing railways. The low wheel loads greatly reduce the maintenance costa and required specification of the track.

Paper 11:
Tmproving the Efficiency of Rural Transport in Developing Countries Countries
by R.P. Sikka
Ministry of Shipping and "Transport (Roads Wing), India*
(This paper was submitted but not presented by the author at the seminar)
Almost forty per cent of the population of Asia are living in conditions of absolute poverty, the majority in rural areas. In order to improve this situation there is a strong emphasis on integrated rurai development in which transport plays an important role.

There are a number of ways in which rural transport can be made more efficient, these include; improvement of the road infrastructure, introduction of new vehicles, 'and design changes to existing vehicles to suit local conditions. Vehicle design for Asia is the subject of current Investigations, the following being a summary of some of the work being undertaken based on preliminary findings.

The choice of suitable vehicle designs has to take account of the prevailing conditions, of which the most important are:
f) Approximately 87% of rural land holdings are less than five hectares in size.
ii) Because of the size of the holdings most farmers are engaged in subsistence agriculture and have very little marketable surpius. As a result there is no means of investing in mechanical equipment for either agricultural or transport purposes.
iii) Farm-to-market roads are generally in poor condition, $70-80 \%$ being of low grade surface rendering motor vehicle movement difficult, and making the marketing of small quantities of produce uneconomic. (This can be partially offset by co-operatives but these are still rare). In addition the road network density is only about a quarter of that of most developed countries.
iv) Draft animals are extensively employed on farms, availability being of the order of one to every $0.5-0.7$ hectares.

Multi-purpose mechanised vehicles represent one possible design solution to the transport problem, there being numerous examples already available. However their impact in developing countries has been qmall due to high cost (USZ2000+), heavy maintenance requirements, lack of workshop facilities or limited applications beyond transport, and their general inability tonegotiate unimproved road surfaces. These drawbacks have led farmers to prefer tubewells to power tillers.

One well-tried solution to the problem of multi-purpose vehicles is the tractor-trailer combination. These exist in the Philippines, India, Pakistan

* Note: This paper expresses the author's personal views.
and Laos where agriculture has been partially mechanised. The combinations can be used for transport of both goods and passengers in addition to their on-farm functions. As tractors are usually only required for 3-4 months of the year for ploughing they can be released for transport functions for much of the remainder. This has the dual advantages of higher vehicle utilisation and, a higher rate of return on the initial investment as rental can be charged for transport operations.

There is still considerable scope for the exploitation of three wheeled vehicles (both mechanically powered and pedal driven) both in terms of design and in usage. Such vehicles are currently used extensively in India and Malaysía, many local design adaptions having emerged as a result of operating experience over a number of years. It should be recognised that many of these local design variations are far from optimum solutions being often dictated by the availability of second-hand componerita and local skills and equipment. Better designs more suited to rugged conditions could be advantageously developed and could have considerable potential. The popularity of such machines is due to their simple technology and their relatively low initial cost. The travel range ($10-20 \mathrm{~km}$. for pedal power, $40-50 \mathrm{~km}$. for motor power) allows for most of the trips that are likely to be undertaken from smallholdings to market points.

Animal drawn carts are still likely to remain as the major meafs of rural transport in many regions of Asia despite a generally improving economic situation. This is largely due to availability of both the draft animals and the carts, both of which represent a fixed cost to the farmer. Their use for transport therefore incurs no additional cost. In addition the generally poor road conditions, especially in rainy weather, make it impossible for any other vehicle to negotiate the access roads or tracks within the farms. As with three wheeled vehicles, design improvements could make a substantial difference to the overall efficiency of such carts. The maln improvements that are requiled are the substitution of wooden wheels by/pneumatically tyred wheels, lighter axles, and better wheel bearings. However, unless there is an economic advantage to the owner, such improvements will not be undertaken. This has been demonstrated by various unsaccessful attempts by local authorities to improve the efficiency of such vehicles.

Where farmers have started growing cash crops, such as tobacco or cane sugar, and the road network has been improved, efficiency has become more important With the result that improvements have been made in order to increase the size of load that can be carried. There has however been little attempt to apply scientific pringiples to cart deaign. Such application could usefully be made to most of the major features of the train; harness design, height and construction of load platformp type and number of axles, and number and size of wheels.

There is still much development work that can be undertaken to improve the transert capability of many of Asia's mural poor. Múch of the basis for that development already exists, the hardware is still lacking

This period was necessarily short but provided an opportunity both for general discussion and for a review of the major points which had emerged from the papers presented. The chairman noted that although a wide range of clever and intriguing designs had been demonstrated there was:not always evidence of their viability. The film which had been shown as part of the SNAIL presentation was refreshing in that it had deliberately identified a number of the problems associated with the use of the prototype machine, thus demonstrating the difficulty of producing simple yet effective hardware.

Dr. Wijewardene"s S.F.V., the TRANTOR and the SNAIL all demonstrated the effort currently being directed towards multi-purpose vehicles and emphasised the close link between agriculture and transport. The development of such vehicles was considered by many present to be of critical importance, since they offer the possibility of providing rural communities with both increased returns from their agricultural activities and improved mobility. 1
Technical developments aimed at improving the efficiency of animal transport were also seen as being of vital importance. The use of this mode still has economic advantages in many parts of the world and these can be maximised by improved vehicle design. The high initial cost of motorised vehicles is likely to remain an obstacle to their widespread use in many rural communties in the foreseeable future. This problem can be partially offset by communal ownership of vehicles or by providing access to a vehicle pool. However such systems are difficult to organise so that they meet the requirements of smallholders, and their establishment may require governmeńt assistance.

Clearly no single simple vehicle will meet all the rural transport needs of all developing countries, given the widely varying conditions which exist. The long-term objective should be to provide a choice of vehicle options covering the spectrum of transport needs. However a number of criteria were defined which it was fel.t that vehicles designed for use in the rural areas of developing countries should meet. These were; minimised initial cost; suitability for local manufacture utilising locally available materials and skills; longevity and ease of maintenance; efficient use of scarce, expensive and usually imported fuels; suitability for use on existing tracks or low-cost roads, and applicability to individual farm operations. It was also argued that vehiqle design work should only be undertaken following a thorough assessment and identification of real transport needs in a particular country or countries, and that this must be based on local experience. It was generally agreed that prototype vehicles must be extensively field tested prior to the design being finalised and the machine being made available.

Dr. Howe, the Chairman of the afternoon session, summed up by stating that he considered that the main objectives of the seminar had been. achieved in enabling those present to become better acquainted with one another and with the work which each was undertaking. He expressed the hope that there would be continuing cross-fertilisation of ideas and that individual pfforts would be aligned to larger programmes in order to àchieve the maximum effect.

3. Conclusions

- The seminar, which was organised by the Transport Panel of the Intermediate Technology Development Group, was attended, by more than fifty people. The papers presented covered many aspects of the subject "simple vehicles for developing countries" inclading; vehicles presently in use and prototypes currently bedngedeveloped; the role of transport in agriculture; the use of simple vehicles in labour-intensive construction; manufacturing strategies for local production; and the transport needs and economic constraints in the rural areas of developing countries.

The informal contributions made during open discussion emphasised that efforts should be concentrated on identifying and developing vehicles which meet the real transport needs of rural communities, and highlighted the requirement for such vehicles to be economically appropriate. General consensus was reached on the criteria which should be met by vehicles intendedfor use in developing countries, and a number of aspects of vehicle design were identified where further work would be-of particular value,
4. Acknowledgements

The success of the seminar was the result of the efforts and co-operation of many people. The chairman and members of the ITDG Transport Panel \therefore particularly wish to express their thariks to the following:

The Dregtor of Lanchester Polytechnic, for allowing the use of the \therefore facilities of the college, and for welcoming the participants to the seminar.

Lord Oram, for opening the seminar and chairing the morning session: Leonora Stettner, for taking notes of the proceedings.
Chris Bradshaw and Roland Doe, of Andrews Lawn Edgers Ltd., for demonstrating two Piaggio vehicles to the participants.
David Weightman, for playing the major role in organising the seminar.
Renee Green, for secretarial assistancer
5. Appendices
5.1, Addresses of Contributors

Dr. J.D.G.F. Howe, Alastair Dick \& Associates, 24, Gravel Hill, Leatherhead, Surrey.
I.J. Barwell, c/o Department of Engineering Science, University of Oxford, Parks Road, Oxford.
K. Hutcheon, Raleigh Cycles Ltd. , 177, Lenton Boulevard; Nottingham. S.S. Wilson, Department of Engineering Science, University of Oxford, Parks Road, Oxford.
D. Weightman, Department of Industrial Design (Tran'sport), Lanchester Polytechnic, Gosford Street, Coventry.
M. Sharrock, Messrs. Scott, Wilson, Kirkpatrick \& Partners, Scott House; Basing View, Basingstoke.

Dr. R. Wijewardene, International Institute of Tropical Agriculture, P.O. Box 5320, Ibadan, Nigeria.
P. Crossley, J. Kilgour \& J. Morris, ${ }^{\circ}$ National College of Agricultural
Engineering, Silsoe, Bedford.
G. Edwards, Trantor International Ltd., 38, Station Road, Stockport.
K. Salt, Andrews Lawn Edgers Ltd., The Garden Centre, Sunningdale, Berks. M. Cooley, Lucas Aerospace Ltd. . Chase Road, London NW 10.
R. Fletcher, North East Iondon Polytechnic, Forest Road, London E17.
R. Sikka, Ministry of Transport \& Shipping (Roads Wing), New Delhi, India.
5.2 List of Participants
W. Armstrong (ex. Armstrong Equipment Litd.)
R. Railey (Viscount-Trusty Litd.)
M. Bennett (Lanchester Polytechnic)
L. Black (Warwick University)
C. Bradshaw (Andrews Lawn Edgers Ltd.)
R. Brocklehurst (Leyland Cars Ltd.)
D. Bryan (AMEX Ltd.)
M. Butt (Lanchester Polytechnic)
J. Cannell (Warwick University)
J. Cares (Cranfield Institute of Technology)
M. Cherry (Freelance journalist)
K. Chopra (World Bank)
C. Carnemark (World Bank)
A. Cowan (Industrial Liaison Unit, ITDG)
F. Crouch (Newcastle U_{n} iversity)
R. Doe (Andrews Lawn Eḍgers Ltd.)
R. Farnell (Lanchester Polytechnic)
A. Franchi (Bicycle manufacturer)
J. Frankel (World Bank)
R. Gillie (Warwick University)
J. Howard (Ox.fam)
M. Jahangirif (Royal College of Art)

Dr. Macmillan (Motor Industries Research Association)
Mr. Nicholls (Tropical Products Institute)
W. Palmer (lanchester Polytechnic)
P. Rose (Moulton Developments Ltd.)
S. Salleh (Royal College of Art)
J. Sheppard (Leyland Cars Ltd.)
B. Smith-Boyes (Polytechnic of Central London)
W. Supple (Surrey University)
T. Thomas (Warwick University)
E. Tingle (Transport \& Road Research Labioratory)
V. Vegoda (Bicyclè manufacturer)
F. Whitt (co-author, 'Bicycling Science)
\%

[^0]: $-\frac{1}{4}$

