

Energy Storage for Hybrid Village Power Systems

Village Power '98 Technical Workshop

Steve Drouilhet

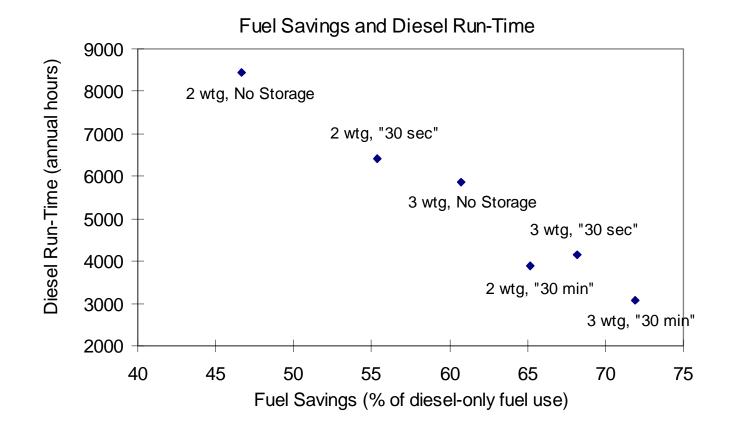
Sr. Engineer

National Renewable Energy Laboratory Golden, Colorado, USA

Defining the Energy Storage Capacity

- It is convenient to define storage capacity in terms of the time that the nominal energy capacity could cover the load at rated power.
- Example: What is the nominal power duration of a 250VDC, 200 amp-hr battery in a power system rated at 100 kW?

$$Capacity = \frac{(200 \cdot \text{Amp} \cdot \text{hr})(250 \cdot \text{Volts})}{100 \cdot \text{kW}} = 30 \cdot \text{minutes}$$



Hybrid Power Systems Use Various Amounts of Energy Storage Depending on the Objective

Storage Capacity	Function of Energy Storage	
Very short term	Helps cover the load during the time it takes to start and	
(less than 1 minute)	synchronize the backup generator.	
	 increases system reliability 	
	reduces required reserve capacity	
Short term	Helps cover the load during short term load peaks or wind energy	
(5-60 minutes)	deficits, eliminating the need to start the backup generator.	
	• significant reduction in diesel run time and fuel	
	consumption	
Medium term	Stores excess renewable energy to be used to meet the load later	
(2-12 hour)	in the day.	
	• Further reduction in diesel run time and fuel consumption	
	• Provides greater utilization of available renewable energy;	
	less renewable energy is wasted	
Long term	Stores excess renewable energy to meet the load during days of	
(1-3 days)	higher than average load or lower than average renewable energy	
	availability.	
	Possibly eliminates need for back up generator	

Impact of Energy Storage on a High Penetration Wind-Diesel Village Power System

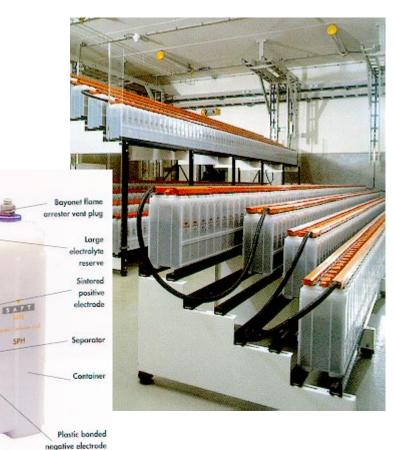
Applicability of Various Energy Storage Technologies to Different Storage Requirements

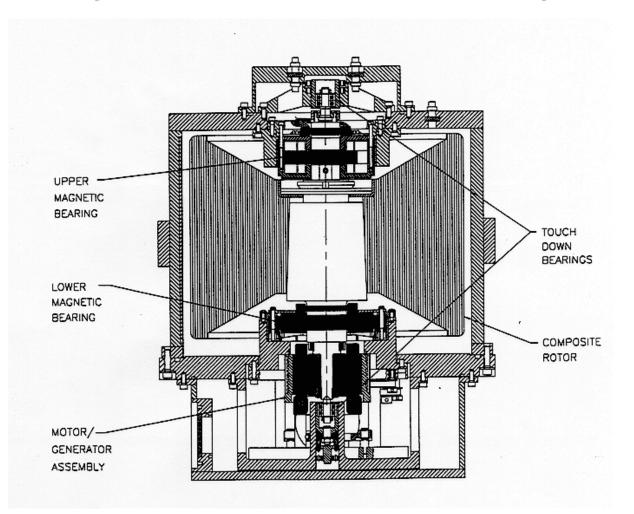
Storage Capacity	Technology	Status
Very short term	NiCad Battery	Commercial
(less than 1 minute)	Lead-Acid Battery	Commercial
	Flywheel	Near commercial
Short term	NiCad Battery	Commercial
(5-60 minutes)	Lead-Acid Battery	Commercial
	Flywheel	Experimental
Medium term	Lead-Acid Battery	Commercial
(2-12 hour)	Hydrogen	Experimental
Long term	Lead-Acid Battery	Commercial
(1-3 days)	Pumped Hydro	Experimental
	Hydrogen	Experimental

Some Energy Storage Technologies Used or Proposed for Hybrid Village Power Systems

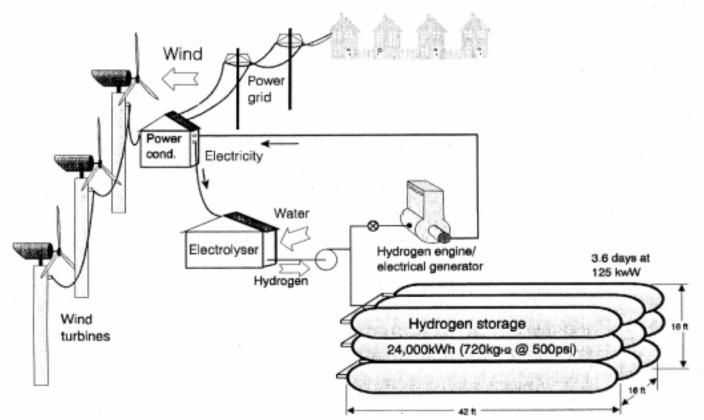
- Lead-Acid Battery
- Nickel-Cadmium Battery
- Flywheels (Electromechanical Battery)
- Hydrogen
- Pumped Hydro

Lead-Acid Battery

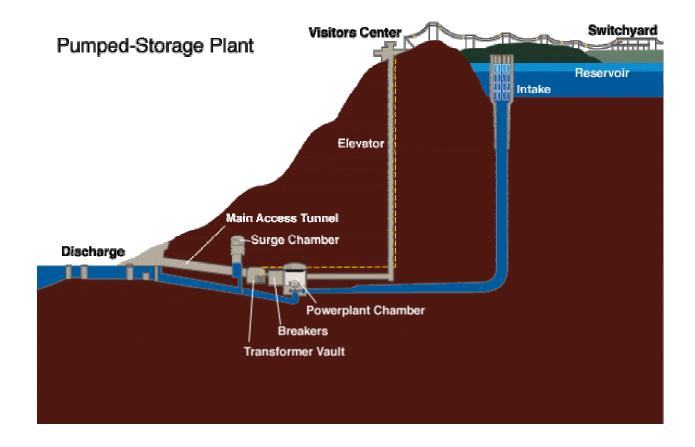

- Well proven
- Reliable if handled properly
- Moderate cost
- High energy density
- Limited lifetime
- Corrosive electrolyte
- Not tolerant of abuse
- Performance suffers drastically at low temperatures.


Ni-Cd Battery

- Long life
- Tolerant of abuse
- High energy <u>and</u> power density
- Good low temperature performance
- Relatively light
 weight
- High cost
- Cadmium considered toxic material



Flywheels (Electromechanical Battery)


Hydrogen Cycle Energy Storage

Source: Glenn Rambach, Desert Research Institute

Pumped Hydro

Conclusions

- Energy storage is often the key factor in implementing isolated renewable energy hybrid power systems.
- Before choosing the type and size of energy storage, the objective must be considered.
- In most cases, batteries are still the most costeffective energy storage technology.
- Further R&D on advanced storage technologies will increase the range of options available to designers of village power systems.