Table 2-2. Fire tube dimensions

Inside diameter (inches)	Minimum length (inches)	Engine power (horsepower)	Typical engine displacement (cubic inches)
$2^{\text {a }}$	16	5	
$4^{\text {a }}$	16	15	10
6	16	30	30
7	18	40	60
8	20	50	80
9	22	65	100
10	24	80	130
11	26	100	160
12	28	120	200
13	30	140	240
14	32	160	280
			320

[^0]
NOTES:

For engines with displacement rated in liters, the conversion factor is 1 liter $=61.02$ cubic inches.

The horsepower listed above is the SAE net brake horsepower as measured at the rear of the transmission with standard accessories operating. Since the figures vary when a given engine is installed and used for different purposes, such figures are representative rather than exact. The above horsepower ratings are given at the engine's highest operating speed.

[^0]: ${ }^{2}$ A fire tube with an inside diameter of less than 6 in. would create bridging problems with wood chips and blocks. If the engine is rated at or below 15 horsepower, use a $6-\mathrm{in}$. minimum fire tube diameter and create a throat restriction in the bottom of the tube corresponding to the diameter entered in the above table.

