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Chapter 1

Functions

In this chapter we review the basic concepts of functions, polynomial func-
tions, rational functions, trigonometric functions, logarithmic functions, ex-
ponential functions, hyperbolic functions, algebra of functions, composition
of functions and inverses of functions.

1.1 The Concept of a Function

Basically, a function f relates each element z of a set, say Dy, with exactly
one element y of another set, say R;. We say that Dy is the domain of f and
Ry is the range of f and express the relationship by the equation y = f(x).
It is customary to say that the symbol x is an independent variable and the
symbol y is the dependent variable.

Example 1.1.1 Let Dy = {a,b,c}, Ry = {1,2,3} and f(a) =1, f(b) =2
and f(c) = 3. Sketch the graph of f.

graph

Example 1.1.2 Sketch the graph of f(z) = |z|.
Let Dy be the set of all real numbers and Ry be the set of all non-negative
real numbers. For each z in Dy, let y = |z| in Ry. In this case, f(z) = |z,

2
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the absolute value of z. Recall that

2] = z ifxz>0
=Y =z ifz<o

We note that f(0) =0, f(1) =1 and f(—1) = 1.

If the domain D and the range R; of a function f are both subsets
of the set of all real numbers, then the graph of f is the set of all ordered
pairs (x, f(x)) such that z is in Dy. This graph may be sketched in the zy-
coordinate plane, using y = f(z). The graph of the absolute value function
in Example 2 is sketched as follows:

graph

Example 1.1.3 Sketch the graph of
flz) = vz —4.

In order that the range of f contain real numbers only, we must impose
the restriction that o > 4. Thus, the domain Dy contains the set of all real
numbers x such that x > 4. The range R; will consist of all real numbers y
such that y > 0. The graph of f is sketched below.

graph

Example 1.1.4 A useful function in engineering is the unit step function,
u, defined as follows:

u(x):{o ifz<0

1 ifz>0

The graph of u(z) has an upward jump at x = 0. Its graph is given below.
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graph

Example 1.1.5 Sketch the graph of

It is clear that Dy consists of all real numbers x # +2. The graph of f is
given below.

graph

We observe several things about the graph of this function. First of all,
the graph has three distinct pieces, separated by the dotted vertical lines
xr = —2 and x = 2. These vertical lines, x = +2, are called the vertical
asymptotes. Secondly, for large positive and negative values of z, f(z) tends
to zero. For this reason, the z-axis, with equation y = 0, is called a horizontal
asymptote.

Let f be a function whose domain Dy and range R; are sets of real
numbers. Then f is said to be even if f(x) = f(—x) for all z in D;. And
f is said to be odd if f(—z) = —f(z) for all x in Dy. Also, f is said to be
one-to-one if f(x1) = f(xy) implies that z; = xs.

Example 1.1.6 Sketch the graph of f(z) = z* — 22
This function f is even because for all x we have

The graph of f is symmetric to the y-axis because (z, f(x)) and (—z, f(x)) are
on the graph for every x. The graph of an even function is always symmetric
to the y-axis. The graph of f is given below.

graph
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This function f is not one-to-one because f(—1) = f(1).

Example 1.1.7 Sketch the graph of g(z) = 2* — 3z.
The function g is an odd function because for each =,

g(—z) = (—2)® = 3(—2) = —2® + 30 = —(2* — 32) = —g(2).

The graph of this function ¢ is symmetric to the origin because (z,¢g(x))
and (—xz, —g(z)) are on the graph for all x. The graph of an odd function is
always symmetric to the origin. The graph of g is given below.

graph

This function g is not one-to-one because g(0) = g(v/3) = g(—/3).
It can be shown that every function f can be written as the sum of an
even function and an odd function. Let

o(r) = 5 (F (@) + f(=2)), () = 5(F () — F(-2))
Then,
o(—2) = 5(f(=2) + £ (&) = g(x)
(=) = S (7(~) — f(x)) = ~h(a)
Furthermore

f(x) = g(x) + h(z).

Example 1.1.8 Express f as the sum of an even function and an odd func-

tion, where,
flx)=a"—22° + 2% -5z + 7.

We define
1
9(z) = 5(f(2) + f(~2))
= %{(:L’4—2.1'3+x2—5$+7)+(l’4+21’3+$2+5l’+7>}

=2t 42747
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— %{(:E4—23:3+x2—5x+7) — (2" +22° + 2* + 52 + 7)}
= —22% — 5z,
Then clearly g(z) is even and h(x) is odd.
g(=z) = (=2)* + (—2)* + 7
=zt 4+ +7
=g()
h(—z) = — 2(—x)* — 5(—2)
= 22° + bz
= —h(x).
We note that
g(z) + h(z) = (z* + 2> + 7) + (—22° — 5z)
=gt =22 +2® — 547
= f(2).
It is not always easy to tell whether a function is one-to-one. The graph-
ical test is that if no horizontal line crosses the graph of f more than once,

then f is one-to-one. To show that f is one-to-one mathematically, we need
to show that f(x;) = f(z2) implies 1 = xs.

Example 1.1.9 Show that f(z) = 23 is a one-to-one function.
Suppose that f(x;) = f(z2). Then

0=a}— )
= (21 — 29) (2} + 7129 + 73) (By factoring)
If 21 # o, then 22 + 1179 + 22 = 0 and
—xg £ /3 — 43
2

I =

—Ty + /=323
5 :
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This is only possible if x; is not a real number. This contradiction proves
that f(z1) # f(xq) if 1 # x5 and, hence, f is one-to-one. The graph of f is
given below.

graph

If a function f with domain D; and range Ry is one-to-one, then f has a
unique ¢nverse function g with domain Ry and range Dy such that for each
x in Dy,

9(f(z)) = x
and for such y in Ry,
fla() =v.

This function g is also written as f~!. It is not always easy to express g
explicitly but the following algorithm helps in computing g.

Step 1 Solve the equation y = f(z) for x in terms of y and make sure that there

exists exactly one solution for z.

Step 2 Write x = g(y), where g(y) is the unique solution obtained in Step 1.

Step 3 If it is desirable to have x represent the independent variable and y

represent the dependent variable, then exchange x and y in Step 2 and
write

y = g(z).

Remark 1 If y = f(z) and y = g(z) = f~!(x) are graphed on the same
coordinate axes, then the graph of y = g(x) is a mirror image of the graph
of y = f(x) through the line y = z.

Example 1.1.10 Determine the inverse of f(z) = 2.

We already know from Example 9 that f is one-to-one and, hence, it has
a unique inverse. We use the above algorithm to compute g = f~1.

Step 1 We solve y = x3 for & and get 2 = y'/3, which is the unique solution.
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Step 2 Then g(y) = y'/% and g(z) = /% = f~'(z).

Step 3 We plot y = 2% and y = 2'/3 on the same coordinate axis and compare
their graphs.

graph

A polynomial function p of degree n has the general form
p(z) = apz™ + a1zt - A a1+ ay, ay # 0.

The polynomial functions are some of the simplest functions to compute.
For this reason, in calculus we approximate other functions with polynomial
functions.

A rational function r has the form

() — P@)
(@) q()

where p(z) and ¢(x) are polynomial functions. We will assume that p(z) and
¢(z) have no common non-constant factors. Then the domain of r(z) is the
set of all real numbers = such that ¢(x) # 0.

Exercises 1.1

1. Define each of the following in your own words.
(a
(b

is a function with domain D; and range Ry

is an odd function

f
f is an even function
c) f

The graph of f is symmetric to the origin.

)
)
()
(d) The graph of f is symmetric to the y-axis
e)
)

(
(f) The function f is one-to-one and has inverse g.
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2. Determine the domains of the following functions

2] v’

@) fa) = () F@) =
(©) J(@) = Va® =9 (@) fla) = =

3. Sketch the graphs of the following functions and determine whether they
are even, odd or one-to-one. If they are one-to-one, compute their in-
verses and plot their inverses on the same set of axes as the functions.

(a) flz) =2%~1 (b) g(z) =23 -1

(c) h(z) =9 — 2,2 > 9 (d) k(z) = 2%/

4. If {(x1,11), (x2,Y2), . -, (Tny1,Yns1)} is a list of discrete data points in
the plane, then there exists a unique nth degree polynomial that goes
through all of them. Joseph Lagrange found a simple way to express this
polynomial, called the Lagrange polynomial.

r—x r—x
For n = 2, P2(95):y1< 2)+y2< 1)
xr1 — Io Ty — T1

_ 2) = g T T2) (@ — 23) (z — @) (2 — x3)
For (n : 37)(P3_( ) ) s (951 - $2)($1 - 953) T ($2 - $1)($2 - $3) *
s (23 — 1) (23 — 22)
B (x — z2)(x — z3)(x — 24) (x — 1) (x — 23)(x — 24)
Pa@) =n (21 — 22) (21 — x3) (21 — 24) ’ (w2 — z1) (22 — 23) (22 — 24) "
(x — 1) (x — 22)(x — 24) (x — 1) (x — 29)(x — x3)
% (w3 — 21) (23 — 32) (25 — 24) IS (4 — 21) (24 — 32) (24 — 73)

Consider the data {(—2, 1), (—1,—2),(0,0), (1,1),(2,3)}. Compute Py(x),
Ps(z), and Py(z); plot them and determine which data points they go
through. What can you say about P,(z)?
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A linear function has the form y = ma + b. The number m is called
the slope and the number b is called the y-intercept. The graph of this
function goes through the point (0,b) on the y-axis. In each of the
following determine the slope, y-intercept and sketch the graph of the
given linear function:

a) y=3x—5 b) y=—-2x+4 c) y=4r—3

d) y=4 e) 2y + 5z =10

A quadratic function has the form y = ax? 4 bx + ¢, where a # 0. On
completing the square, this function can be expressed in the form

_ +£ 2_b2—4ac
y=a . 2a 4a2 '

. . . b b? — 4dac
The graph of this function is a parabola with vertex o0’ T da
a a

and line of symmetry axis being the vertical line with equation x = eV

a
The graph opens upward if ¢ > 0 and downwards if a < 0. In each of
the following quadratic functions, determine the vertex, symmetry axis
and sketch the graph.

a) y=4z*—8 b) y=—4z*+16 ¢c) y=x*+4r+5
d) y=2>—-6x+8 e) y=—a’+2z+5 f) y=222—6x+12
g) y=—-22>—-6z+5 h) y=-222+6x+10 i) 3y+622+10=0

j) y=—2"+4x+6 k) y=—2"+4x 1) y =422 — 162

Sketch the graph of the linear function defined by each linear equation
and determine the x-intercept and y-intercept if any.

a) 3z —y=3 b) 2z —y =10 c) x=4-2y
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d) 4z —3y =12 e) 3x+4y =12 f) 4z + 6y = —12
g) 20 —3y==6 h) 2z + 3y =12 i) 3z +5y =15
Sketch the graph of each of the following functions:

a) y = 4lz| b) y = —4lz|
c) y=2lx|+ |z —1] d) y=3|x| + 2|z — 2| — 4|z + 3|

e) y=2le+2 —3a+1|

Sketch the graph of each of the following piecewise functions.

2 ifz>0 x? for x <0
a)yz{ - b)yz{ N

-2 ifz<0 20 +4 forx >0
&) y= 422 if x>0 Q) y= 32 forz <1
v= 33 <0 v= 4 for x > 1

e)y=n—1forn—1<uz < n, for each integer n.

f) y=mnfor n — 1 < x <n for each integer n.

The reflection of the graph of y = f(x) is the graph of y = —f(z). In
each of the following, sketch the graph of f and the graph of its reflection
on the same axis.

a) y=a’ b) y=a? c) y =zl
d) y=2a%—4x e) y=1%—-2z f) y=l|z|+ |z —1]

. 22+1 forz <0
) y=1, .
z>+1 ifx<O
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11. The graph of y = f(z) is said to be

(i) Symmetric with respect to the y-axis if (z,y) and (—x,y) are both
on the graph of f;

(ii) Symmetric with respect to the origin if (z,y) and (—z, —y) are both
on the graph of f.

For the functions in problems 10 a) — 10 i), determine the functions whose
graphs are (i) Symmetric with respect to y-axis or (ii) Symmetric with
respect to the origin.

12. Discuss the symmetry of the graph of each function and determine whether
the function is even, odd, or neither.

a) f(x)=a%+1 b) f(z)=a'—32?+4 c) f(z)=a3—2a?
d) f(z) =223+ 3z e) f(z)=(z—1)3 f) flz)=(z+1)*
g) flz)=va?+4 h) flx) = 4fx] +2 i) fla)=(a+1)
D=5 0 @)=V ) () =2

1.2 Trigonometric Functions

The trigonometric functions are defined by the points (x, y) on the unit circle
with the equation 2% + y? = 1.

graph

Consider the points A(0,0), B(z,0), C(z,y) where C(z,y) is a point on
the unit circle. Let 0, read theta, represent the length of the arc joining
the points D(1,0) and C(z,y). This length is the radian measure of the
angle CAB. Then we define the following six trigonometric functions of 6 as
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follows:
in 6
sinQ:—,cosQ:z,t&qu:g:&7
1 r  cosf
1 1 1 1
Csc9:—:.—,secaz_:_’cotg_f: .
y  sinf x  cosf y  tand

13

Since each revolution of the circle has arc length 27, siné and cosf have
period 27. That is,

sin(f + 2n7) = sin @ and cos(f + 2nw) = cosf, n=0,+1,£2,...

The function values of some of the common arguments are given below:

0 (0| n/6 | /4 | ©/3 | w/2|2n/3 | 3n/4 /6 | 7w
sinf | 0| 1/2 [ v2/2|V3/2] 1 | V3/2] V2/2 /2 |0
cosf | 1| +v3/2|v2/2] 1/2 | 0 | —1/2 | —v2/2 | —v/3/2 | -1
0 /6 Sr/4 Aw/3 | 3n/2 | b57/3 Tn/4 | 117/6 | 27
sinf | —1/2 | —v2/2 | —V3/2 | -1 | —/3/2| —v2/2| —-1/2 | 0
cos | —/3/2 | —v2/2| —1/2 0 1/2 V2/2 | V32 ] 1

A function f is said to have period p if p is the smallest positive number
such that, for all x,

flz+np)=f(x), n=0,£1,£2,....

Since csc @ is the reciprocal of sin @ and sec 6 is the reciprocal of cos(6), their
periods are also 27. That is,

csc(f + 2nm) = csc(f) and sec(f + 2nm) =secl, n=0,£1,£2,....
It turns out that tan# and cot 6 have period 7. That is,
tan(f 4+ nm) = tan and cot(f +nm) =cotf, n =0,+1,+2,... .

Geometrically, it is easy to see that cosf and sec § are the only even trigono-
metric functions. The functions sin @, cos 6, tanf and cot @ are all odd func-

tions. The functions sinf and cos@ are defined for all real numbers. The
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functions csc 6 and cot 0 are not defined for integer multiples of 7, and secf
and tan @ are not defined for odd integer multiples of /2. The graphs of the
six trigonometric functions are sketched as follows:

graph

The dotted vertical lines represent the vertical asymptotes.

There are many useful trigonometric identities and reduction formulas.
For future reference, these are listed here.

sin? @ + cos?6 =1 sin?6 =1 — cos? 0 cos2f =1 —sin? 60
tan?6 + 1 = sec?d tan?6 = sec?f — 1 sec?f —tan?6 =1
1 + cot?f = csc?d cot? 6 = csc? 0 — 1 csc?h —cot?0 =1
sin 20 = 2sin 6 cos 6 cos20 = 2cos?h — 1 cos260 = 1+ 2sin%6

sin(x 4+ y) = sinx cosy + coszsiny, cos(z +y) = coszcosy — sinxrsiny
sin(x —y) =sinxcosy — cosxsiny, cos(z —y) = cosxcosy + sinxrsiny

tanx + tany tanz — tany

tan(z +y) =

tan(z — y)

1 —tanztany - 1+ tanzxtany

sina+sinﬁ:2sin( 2ﬁ) cos( ;6)

b sin a—p
2

Q
+
Q

Q
+

sina —sin 3 = 2(:08( 5

cos a + cos 3 = 2 cos (a—;—ﬁ) COS (agﬁ

cosa — cos 3 = —2sin (M> sin (a ﬁ)
2 2
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: L . :
sinx cosy = §(sm(aj +y) +sin(z — y))
. L . :
cosxsiny = i(sm(a: +y) —sin(x — y))
1
COS T COSY = é(cos(a: —y) + cos(z +y))

sinzsiny = %(cos(x —y) — cos(x +vy))
sin(m £ 0) = Fsind

cos(m £ 6) = —cosb

tan(m £ 0) = £tand

cot(m £ 6) = +cotd

sec(m +6) = —sect

cse(m £ 60) = Fesch

In applications of calculus to engineering problems, the graphs of y =
Asin(bx + ¢) and y = A cos(bz + ¢) play a significant role. The first problem
has to do with converting expressions of the form Asinbx + B cos bz to one
of the above forms. Let us begin first with an example.

Example 1.2.1 Express y = 3sin(2z)—4 cos(2z) in the form y = Asin(2x+
0) or y = Acos(2z £ 0).

First of all, we make a right triangle with sides of length 3 and 4 and
compute the length of the hypotenuse, which is 5. We label one of the acute
angles as 6 and compute sinf, cosf and tanf. In our case,

3 4
sin@zg , COSQZE ,and, tan@zi.

graph
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Then,

y = 3sin2x — 4 cos 2z

=5 {(sin(%)) (g) B (COS(%))ﬂ

= 5[sin(2z) sin # — cos(2x) cos 0]
= —5[cos(2x) cos O — sin(2x) sin 0]
= —b[cos(2z + 0)]

Thus, the problem is reduced to sketching a cosine function, 777
y = —bcos(2x + 0).

We can compute the radian measure of 6 from any of the equations

sinf = —, cosf = 1 or tanf = —.
5 5 4

Example 1.2.2 Sketch the graph of y = 5cos(2z + 1).

In order to sketch the graph, we first compute all of the zeros, relative
maxima, and relative minima. We can see that the maximum values will be
5 and minimum values are —5. For this reason the number 5 is called the
amplitude of the graph. We know that the cosine function has zeros at odd
integer multiples of 7/2. Let

™ 1
4 2
The max and min values of a cosine function occur halfway between the
consecutive zeros. With this information, we are able to sketch the graph of

2xn+1:(2n+1)g, zn = (20 + 1) n=0,+1,42....

1
the given function. The period is 7, phase shift is 5 and frequency is —.
T
graph

For the functions of the form y = Asin(wt £+ d) or y = A cos(wt + d) we
make the following definitions:
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. s 1 w
period = —, frequency = — = —
w period 27
d

amplitude = |A|, and phase shift = —.
w

The motion of a particle that follows the curves A sin(wt+d) or A cos(wt+d)
is called simple harmonic motion.

Exercises 1.2

1. Determine the amplitude, frequency, period and phase shift for each of
the following functions. Sketch their graphs.

(a) y = 2sin(3t — 2) (b) y = —2cos(2t — 1)
(c¢) y =3sin2t + 4 cos 2t (d) y = 4sin2t — 3 cos 2t
(e) sin x
e =

Y x

2. Sketch the graphs of each of the following:

(a) y =tan(3z) (b) y = cot(5x) (c) y=axsinx
(d) y =sin(1/x) (e) y = xsin(1/x)

3. Express the following products as the sum or difference of functions.

(a) sin(3x) cos(bz) (b) cos(2z) cos(4x) (c) cos(2x)sin(4x)
(d) sin(3z) sin(5z) (e) sin(4x) cos(4x)

4. Express each of the following as a product of functions:

(a) sin(z + h) —sinz  (b) cos(x + h) —cosx (c) sin(5x) — sin(3z)
(d) cos(4x) — cos(2z) (e) sin(4x) + sin(2x)  (f) cos(b5x) + cos(3z)

5. Consider the graph of y = sinz, _TW <zx< g Take the sample points

50 (5500 (5 5)- G
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Compute the fourth degree Lagrange Polynomial that approximates and
agrees with y = sinx at these data points. This polynomial has the form

Blz) = v (21— 22) (21 — @3) (21 — 24) (71 — 5) !
(r—o)(@ —2s)(@ —wa)(w —w5)
. (w2 — @1) (22 — 23) (T2 — T4) (22 — 5) !
(x = 21)(w = 23) (& — x3)(x — )
T Ty — w1 (s — w2) (w5 — ) (25 — )

6. Sketch the graphs of the following functions and compute the amplitude,
period, frequency and phase shift, as applicable.

a) y = 3sint b) y =4cost c) y = 2sin(3t)

d) y = —4cos(2t) e) y = —3sin(4t) f) y=2sin(t+ %)
g) y=—2sin(t—%) h) y=3cos(2t+m) i) y= —3cos(2t — )
j) y=2sin(4t + ) k) y=—2cos(6t—m) 1) y=3sin(6t+ )

7. Sketch the graphs of the following functions over two periods.

a) y=2secw b) y=—3tanx c) y=2cotx
d) y=3cscx e) y = tan(mx) f) y=tan(2z + %)
g) y:200t(3x+§) h) y:3sec(2x+§) i) yzQsin(#x—k%)

8. Prove each of the following identities:
a) cos3t = 3cost+4cosdt b) sin(3t) = 3sinx — 4sin’x

.3 3
sin°t — cos” t

c) sin*t — cos*t = — cos 2t d) ———— =1+sin2t
sint — cost

sin(z +y)  tanz +tany

e) cosdtcosTt — sin Ttsindt = cos 11t f) — =
sin(z —y) tanx — tany
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9. If f(z) = cosz, prove that

flx+h)— f(x) — cosa (cosh— 1) Csina (sir;h) ‘

h h

10. If f(x) = sinx, prove that

flx+h)— f(x) iy (cosh— 1) cosa (sinh)

h h h

11. If f(z) = cosz, prove that

f@)—f0 <Cos(x ) - 1) o <sin(w - t)) |

x—t rx—t r—t

12. If f(x) = sinz, prove that

f(z) —i‘(t) —sint <cos(:c —t) — 1) ¢ cost (sin(x - t)) ‘

T — r—t rx—t

13. Prove that

1 — tan®t
2t) = ———.
cos(2t) 1+ tan?¢
14. Prove that if y = tan (g), then
1 —u? 2
(a) cosz = T ZQ (b) sinx = . +uu2

1.3 Inverse Trigonometric Functions

None of the trigonometric functions are one-to-one since they are periodic.
In order to define inverses, it is customary to restrict the domains in which
the functions are one-to-one as follows.
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. ™ ™
Yy =sInzw, 3 <z < 5 is one-to-one and covers the range —1 <y < 1.
Its inverse function is denoted arcsin z, and we define y = arcsinz, —1 <

x < 1, if and only if, x = siny, —g <y< g

graph

y =-cosz, 0 <z <, isone-to-one and covers the range —1 < y < 1. Its
inverse function is denoted arccosx, and we define y = arccosz, —1 <
x <1, if and only if, x = cosy, 0 <y < .

graph

T T

y = tanz, > <z < 5 is one-to-one and covers the range —oo <

y < oo Its inverse function is denoted arctanx, and we define y =
—T ™

arctanzx, —oo < x < oo, if and only if, x = tany, - <y< 5

graph

y =cotz, 0,x < m, is one-to-one and covers the range —oo < y < co. Its
inverse function is denoted arccot x, and we define y = arccotz, —oo <
x < 00, if and only if x = coty, 0 <y < .

graph
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T s .
5. y=secx, 0 <z < 5 or 5 < x < 7 is one-to-one and covers the range

—o<y<-—-lorl<y< oco. Its inverse function is denoted arcsec x,
and we define y = arcsec x, —oo <z < —lor 1 < x < oo, if and only

. T 0w
if, x = secy, O§y<§or§<y§7r.

graph

-7 T .
6. y = cscux, - <z <lorl<zxz< 5 is one-to-one and covers the

range —oo < y < —l or 1 <y < oo. Its inverse is denoted arccsc z and
we define y = arccscx, —o0o < x < —l or 1 < x < oo, if and only if,

- Fs
T = cscy, 7§y<00r0<y§§.

Example 1.3.1 Show that each of the following equations is valid.

. m

(a) arcsin x + arccos x = B)
m
(b) arctan x + arccot x = 5
m

(c) arcsecx + arcescx = B)

To verify equation (a), we let arcsinx = 6.
graph

Then x = sin# and cos (g — 9) = x, as shown in the triangle. It follows
that

s s )
5 0 = arccosxr, — = 0 -+ arccosz = arcsinx + arccos x.

The equations in parts (b) and (c) are verified in a similar way.
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Example 1.3.2 If 6§ = arcsinx, then compute cos#,tan6,cotd,sec and
csc . - .
If 0 is —3 0, or 5 then computations are easy.

graph

Suppose that —g <z<lQorl<z< g Then, from the triangle, we get

V1 — 2
cosf =1 — 22, tan@:%, cot9:7I7

=z x

sec) = ——— and cscl =

V1—22

8l

Example 1.3.3 Make the given substitutions to simplify the given radical
expression and compute all trigonometric functions of 6.

(a) V4 — a2, v =2sinf (b) Va2 —9, x = 3sech

(c) (4 +2%)%2, v =2tand

(a) For part (a), sinf = g and we use the given triangle:

graph
Then
4 — x? VA — 2
0089:71., tan@z*, cot@zix,
2 a4 — 2 x
2
sec) = ——, csch=—.
4 — x? T

Furthermore, v/4 — 22 = 2 cosf and the radical sign is eliminated.
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(b) For part (b), sec = g and we use the given triangle:

graph

Then,

8
(Y]
|

S
[N}
|

s

, tanf =

8
8w

sinf = , cosf =

3
, csch = a

cotf = )
2 -9 22 -9

Furthermore, V22 — 9 = 3tan# and the radical sign is eliminated.

(c) For part (¢), tanf = g and we use the given triangle:

graph
Then,
T 2 2
sinf = , cosf= , cotf = —,
vz +4 244 x
Va?+4 Va?+4
sect = 5 cscl = —

Furthermore, V22 + 4 = 2secf and hence

(4 +2)3% = (2sec0) = 8sec® b,

23
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Remark 2 The three substitutions given in Example 15 are very useful in
calculus. In general, we use the following substitutions for the given radicals:

(a) Va? — 2%, x =asinf (b) Va2 —a?, x = asec
(¢) Va? + 22, x =atand.

Exercises 1.3

1. Evaluate each of the following:

0 amsin () 2 (1)

(b) 4arctan (%) + Sarccot (%)

(c) 2arcsec (—2) + 3arccos (_%)

(d) cos(2arccos(x))

(e) sin(2arccos(z))

2. Simplify each of the following expressions by eliminating the radical by
using an appropriate trigonometric substitution.

(a) _r (b) 34z (c) _r=2
V9 — 22 V16 + 22 zvx? — 25
1+=x 2 —2x

(d) (e)

V2 42z +2 Va2 —2x —3

(Hint: In parts (d) and (e), complete squares first.)

3. Some famous polynomials are the so-called Chebyshev polynomials, de-
fined by

T, (x) = cos(narccosz), —1 <z <1, n=0,1,2,....
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(a) Prove the recurrence relation for Chebyshev polynomials:

Toi1(z) = 22T, (x) — T,,—1(x) for each n > 1.

(b) Show that Ty(z) = 1, Ti(x) = z and generate Ty(x), T5(z), Tu(z) and
T5(x) using the recurrence relation in part (a).

(c) Determine the zeros of T,,(x) and determine where T),(x) has its
absolute maximum or minimum values, n = 1,2,3,4,7.
(Hint: Let 6§ = arccosz,x = cosf. Then T, (z) = cos(nb), T,,11(z) =
cos(nf + 6),T,,_1(x) = cos(nf — #). Use the expansion formulas and
then make substitutions in part (a)).

4. Show that for all integers m and n,

T, ()T (x) = 1

5 [Toen() + T ()]

(Hint: use the expansion formulas as in problem 3.)

5. Find the exact value of y in each of the following

a) y = arccos (—3) b) y = arcsin <*/7§> c) y = arctan(—v/3)
d) y = arccot (—?) e) y = arcsec (—v/2) f) y = arccsc (—v/2)
g) y = arcsec <—%> h) y = arccsc <—%> i) y = arcsec (—2)

j) y = arcesc (—2) k) y = arctan (\’/—% 1) y = arccot (—v/3)

6. Solve the following equations for z in radians (all possible answers).
a) 2sin*x =sin’z b) 2cos’z —cosz—1=0

¢) sin*z +2sinz+1=0 d) 4sin®z +4sinz+1=0
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e) 2sin’x +5sinz +2 =10 f) cot3zr —3cotx =0
g) sin2z = cosx h) cos2z = cosx
i) cos? <§> = oS T j) tanz + cotz =1

7. If arctant = z, compute sinz, cosz, tanz, cotz, secxr and cscx in
terms of t.

8. Ifarcsint = x, compute sinx, cosz, tanz, cotx, secx and cscx in terms
of t.

9. If arcsect = x, compute sinz, cosz, tanz, cotx, secx and cscz in
terms of .

10. If arccost = x, compute sinx, cosz, tanz, cotx, secx and cscz in
terms of .

Remark 3 Chebyshev polynomials are used extensively in approximating
functions due to their properties that minimize errors. These polynomials
are called equal ripple polynomials, since their maxima and minima alternate
between 1 and —1.

1.4 Logarithmic, Exponential and Hyperbolic
Functions

Most logarithmic tables have tables for log,,x,log, z,e” and e™* because
of their universal applications to scientific problems. The key relationship
between logarithmic functions and exponential functions, using the same
base, is that each one is an inverse of the other. For example, for base 10,
we have

N = 10" if and only if z = log,, N.

We get two very interesting relations, namely

z = log,,(10%) and N = 100810 N),
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For base e, we get
z =log,(e®) and y = elo8¥).

If b> 0 and b # 1, then b is an admissible base for a logarithm. For such an
admissible base b, we get

z = log,(b*) and y = blosr¥).

The Logarithmic function with base b, b > 0, b # 1, satisfies the following
important properties:

1. logy(b) =1, log,(1) =0, and log,(b") = « for all real x.
2. log,(zy) =log, x +log,y, x >0,y > 0.

3. log,(z/y) =log,x —logyy, = > 0,y > 0.

4. logy(z¥) = ylogyz, v > 0,z # 1, for all real y.

5. (log, z)(log,b) = log,xb > 0,a > 0,b # 1,a # 1. Note that log,z =
log, x

log, b’
This last equation (5) allows us to compute logarithms with respect to

any base b in terms of logarithms in a given base a.

The corresponding laws of exponents with respect to an admissible base
b,b > 0,b+# 1 are as follows:

1. 1°=1, b' =b, and b8 = g for z > 0.

2. b x b =b"Y

bx
— KTy
3. w =b
4 (7Y = b

Notation: If b = e, then we will express
log,(x) as In(x) or log(x).

The notation exp(xz) = e” can be used when confusion may arise.
The graph of y = logz and y = e” are reflections of each other through
the line y = z.



28 CHAPTER 1. FUNCTIONS
graph
In applications of calculus to science and engineering, the following six
functions, called hyperbolic functions, are very useful.

1. sinh(z) = = (e* — ™) for all real z, read as hyperbolic sine of x.

N —

1
2. cosh(z) = 5 (e 4 e7"), for all real x, read as hyperbolic cosine of .

inh r __ ,—x
3. tanh(z) = sinh(z) _c ¢ , for all real x, read as hyperbolic tangent
cosh(z) e*4e®

of z.

h x —X
4. coth(z) = Cf)s (z) _cte , x # 0, read as hyperbolic cotangent of x.
sinh(z) e*—e™®

1 2
5. sech(z) = = , for all real z, read as hyperbolic secant of
. coshx e +e®
1 2 .
6. csch(z) = = —, x # 0, read as hyperbolic cosecant of x.

sinh(z) e* —e~

The graphs of these functions are sketched as follows:

graph

Example 1.4.1 Eliminate quotients and exponents in the following equa-
tion by taking the natural logarithm of both sides.

(z +1)3(22x — 3)3/4
(1 + 7x)1/3(2x + 3)3/2
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(z+1)3(2x — 3)%/4
(1 + 72)1/3(2z + 3)3/2
= In[(z 4+ 1)3(2z — 3)¥4] — In[(1 + 72)"/3 (22 + 3)*/?
=1In(z +1)> + In(2z — 3)¥* — {In(1 + 72)"/3 4+ In(2z + 3)*?}

In(y) = In

3 1 3
=3n(x+1)+ 1 In(2x — 3) — 3 In(1+ 7x) — 5 In(2x + 3)

Example 1.4.2 Solve the following equation for x:
logs (%) 4 logy 2° — 2log, z1/? = 5.
Using logarithm properties, we get

4logs x + 3logsx — loggx =5

6logsx =5
logs x = g

6
z = (3)%°,

Example 1.4.3 Solve the following equation for z:

er _1

14+er 3

On multiplying through, we get
1
3e¥ =1+¢e" or2e" =1,e" = 3

x = In(1/2) = —1In(2).

Example 1.4.4 Prove that for all real z, cosh?x — sinh® z = 1.

1 21 ?
cosh? z — sinh? 2 = {5(636 + e_”")} - |:§(€I - 6_””)}

1
= Z[e% +24e ) — (X — 24 e )]
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Example 1.4.5 Prove that
(a) sinh(z + y) = sinh z cosh y + cosh z sinh y.
(b) sinh 2z = 2sinh z coshy.
Equation (b) follows from equation (a) by letting = y. So, we work
with equation (a).
: : 1 1 _
(a) sinhxcoshy + coshxsinhy = i(ex —e ). i(ey +eY)
1 1
+ 5(6x +e 7). E(ey —eY)
1
= Z[(eﬁy + Y — e Tty _ ef:rfy)

4 (egc-l-y — ety + 6—:c+y _ 6—1—3/)]

_ %(emy) )
= sinh(z + y).

Example 1.4.6 Find the inverses of the following functions:

(a) sinhzx (b) coshx (c) tanhz
: 1 _
(a) Let y =sinhz = 5(636 — ¢ *). Then
1 - 2
2e"y = 2¢e” 5(636—6 V) =e" -1

e* —2ye” —1 =10
(e)? = (2y)e” —1 =0

2
ez_2yj:\/24y +4:yjE T

Since e* > 0 for all z, e =y + /1 + 9>
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On taking natural logarithms of both sides, we get

r=In(y + 1+ y?).

The inverse function of sinh x, denoted arcsinh x, is defined by

arcsinhz = In(z + V1 + 22)

(b) As in part (a), we let y = coshz and

1
2e"y = 2e” - 5(6‘76 +e ) =41
e — (2y)e" +1=0

ot 2y + \/4y? — 4
B 2
em:yi\/y?j.

We observe that coshz is an even function and hence it is not one-to-
one. Since cosh(—z) = cosh(z), we will solve for the larger x. On taking
natural logarithms of both sides, we get

1 =In(y++y?>—1)or zo =In(y — V3> — 1).

We observe that

Ty =In(y —/y2—1)=1In [(y_\/?ﬂj)(y‘i‘\/?ﬁ)

T v+ V1

1
S P [ —
<y+ Vyr—1
= —]n(y+ \/yQ— 1) = —x.

Thus, we can define, as the principal branch,

arccoshr = In(z + va?2 —1), z > 1
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(c) We begin with y = tanhz and clear denominators to get

= <1
V= ||
e’lle” +e Myl =e"[(e" —e )] , |yl <1
(ezgﬁ—l—l)y:e%—l .yl <1
e (y—1)=—1+vy) , yl <1
1
2:1::_( +y> 7 ‘y’<1
y—1
1
e — _+y7 ly| <1
-y
1
2z =In (ﬂ) .yl <1
I—y
1 1+y
=—-In|—= < 1.
x 2n<1_y) 1yl

Therefore, the inverse of the function tanh x, denoted arctanhz, is defined
by

1 1
arctanh,z = — In T . x| < 1
2 11—z

Exercises 1.4

1. Evaluate each of the following

(a) logy,(0.001) (b) log,(1/64) (c) In(e00)

(100)/3(0.01)2\ "'
(d) lOglO ( (0001>2/3 )

2. Prove each of the following identities
(a) sinh(x — y) = sinh z coshy — cosh z sinh y

(b) cosh(z + y) = cosh z coshy + sinh x sinh y
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(¢) cosh(z —y) = coshz coshy — sinh z sinhy

(d) cosh2z = cosh?z + sinh?2 = 2cosh?z — 1 = 1 + 2sinh®

3. Simplify the radical expression by using the given substitution.
(a) vVa? + 22, © = asinht (b) vVa? —a?, x = acosht
(¢) va? —x?, x = atanht

4. Find the inverses of the following functions:

(a) cothzx (b) sech z (c) esch z
3 :
5. If coshx = 27 find sinh x and tanh z.

6. Prove that sinh(3t) = 3sinht + 4sinh®¢ (Hint: Expand sinh(2t + t).)

7. Sketch the graph of each of the following functions.

a) y= 10" b) y=2" c) y=10"" d) y=27"

e) y=e f) y=e g) y=ze i) y=e®

j) y=sinhzx k) y=coshz 1) y=tanhzx m) y = cothz
n) y=sechx 0) y=cschz

8. Sketch the graph of each of the following functions.

a) y = logyyx b) y=log,x c) y=Inzx d) y=logsx

e) y=arcsinhx f) y=arccoshz g) y=arctanhz

9. Compute the given logarithms in terms log,, 2 and log; 3.
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10.

CHAPTER 1. FUNCTIONS
27 20
a) log; 36 b) logig <1_6) c) logig (5)
30 610
d) log,(600) e) logy (E) f) logy, (W)
Solve each of the following equations for the independent variable.

a) Inx —In(x + 1) = In(4) b) 2logyy(z — 3) = logo(x + 5) + log;, 4

c) logot? = (logyyt)? d) e** —4e*+3=0

e) e*+6e =5 f) 2sinhx + coshz =4



Chapter 2

Limits and Continuity

2.1 Intuitive treatment and definitions

2.1.1 Introductory Examples

The concepts of limit and continuity are very closely related. An intuitive
understanding of these concepts can be obtained through the following ex-
amples.
Example 2.1.1 Consider the function f(z) = z* as = tends to 2.
As z tends to 2 from the right or from the left, f(z) tends to 4. The
value of f at 2 is 4. The graph of f is in one piece and there are no holes or
jumps in the graph. We say that f is continuous at 2 because f(z) tends to
f(2) as z tends to 2.

graph

The statement that f(x) tends to 4 as = tends to 2 from the right is

expressed in symbols as
lim f(z) =14

r—21

and is read, “the limit of f(z), as x goes to 2 from the right, equals 4.”

35
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The statement that f(z) tends to 4 as x tends to 2 from the left is written

lim f(x)=4
T—27
and is read, “the limit of f(z), as = goes to 2 from the left, equals 4.”
The statement that f(x) tends to 4 as x tends to 2 either from the right

or from the left, is written
lim f(x) =4

T—2
and is read, “the limit of f(z), as x goes to 2, equals 4.”
The statement that f(x) is continuous at x = 2 is expressed by the
equation

lim f(z) = f(2).

J,'—>2

Example 2.1.2 Consider the unit step function as x tends to 0.

/0 ifz <0
u(@) =9 4 if > 0.

graph

The function, u(x) tends to 1 as z tends to 0 from the right side. So, we
write

lim u(z) =1 = u(0).

z—07F
The limit of u(z) as = tends to 0 from the left equals 0. Hence,
lim w(z) = 0 # u(0).

rz—0~

Since
lim u(z) = u(0),

z—0t

we say that u(z) is continuous at 0 from the right. Since

lim u(x) # u(0),

z—0~
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we say that u(z) is not continuous at 0 from the left. In this case the jump
at 0 is 1 and is defined by

jump (u(x),0) = h%l+ u(z) — lirgl_ u(z)

=1
Observe that the graph of u(x) has two pieces that are not joined together.
Every horizontal line with equation y = ¢, 0 < ¢ < 1, separates the two

pieces of the graph without intersecting the graph of w(x). This kind of
jump discontinuity at a point is called “finite jump” discontinuity.

Example 2.1.3 Consider the signum function, sign(z), defined by

. T 1 if x>0
Sien (@) =20 =21 ite<o

If x > 0, then sign(z) = 1. If 2 < 0, then sign(z) = —1. In this case,

xlg& sign(z) =1
lim sign(z) = —1
z—0~

jump (sign(x),0) = 2.

Since sign(z) is not defined at x = 0, it is not continuous at 0.

sin @

7

Example 2.1.4 Consider f(0) = as 0 tends to 0.

graph

The point C(cos#,sinf) on the unit circle defines siné as the vertical
length BC'. The radian measure of the angle 6 is the arc length DC'. It is
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clear that the vertical length BC' and arc length DC' get closer to each other
as 0 tends to 0 from above. Thus,

graph
sin ¢
li = 1.
6ot 0
For negative 0, sinf and # are both negative.
in(—0 —sind
i SO gy, TSmO
0—0+ —0 0—0t —0
Hence,
in@
lim o’ = 1.
0—0

This limit can be verified by numerical computation for small 6.

1
Example 2.1.5 Consider f(z) = — as z tends to 0 and as = tends to to0.
x

graph

It is intuitively clear that

. 1
lim — =400
rz—0t X
. 1
Iim —=0
r——400 I
) 1
lim — =—-0
z—0~- T
1
lim —=0.
r——00 I
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The function f is not continuous at x = 0 because it is not defined for x = 0.
This discontinuity is not removable because the limits from the left and from
the right, at x = 0, are not equal. The horizontal and vertical axes divide
the graph of f in two separate pieces. The vertical axis is called the vertical
asymptote of the graph of f. The horizontal axis is called the horizontal
asymptote of the graph of f. We say that f has an essential discontinuity at
x = 0.

Example 2.1.6 Consider f(x) =sin(1/z) as z tends to 0.
graph

The period of the sine function is 27w. As observed in Example 5, 1/z
becomes very large as x becomes small. For this reason, many cycles of the
sine wave pass from the value —1 to the value +1 and a rapid oscillation
occurs near zero. None of the following limits exist:

. (1 . (1 . (1
lim sin|— |, lim sin|— |, lim sin | — | .
z—0t xT z—0— €T z—0 €T

It is not possible to define the function f at 0 to make it continuous. This
kind of discontinuity is called an “oscillation” type of discontinuity.

1
Example 2.1.7 Consider f(z) = xsin (—) as x tends to 0.
x
graph

1
In this example, sin (—), oscillates as in Example 6, but the amplitude
x
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|z| tends to zero as x tends to 0. In this case,

1
lim zsin (—> =0
r—0t x
. ) ( 1 >
lim zsin| — | =
r—0~ T

lim zsin (1> =0.
x—0 x

The discontinuity at z = 0 is removable. We define f(0) = 0 to make f
continuous at z = 0.

Example 2.1.8 Consider f(x) = $2_
:L' J—

This is an example of a rational function that yields the indeterminate
form 0/0 when z is replaced by 2. When this kind of situation occurs in
rational functions, it is necessary to cancel the common factors of the nu-
merator and the denominator to determine the appropriate limit if it exists.
In this example, z — 2 is the common factor and the reduced form is obtained
through cancellation.

2
1 as x tends to £2.

graph

T —2 T —2
f<x)_m2—4_ (x —2)(x +2)
1
42

In order to get the limits as x tends to 2, we used the reduced form to get
1/4. The discontinuity at = = 2 is removed if we define f(2) = 1/4. This
function still has the essential discontinuity at z = —2.
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-3
Example 2.1.9 Consider f(z) = \/52—\9[ as x tends to 3.
x E—

In this case f is not a rational function; still, the problem at x = 3 is
caused by the common factor (v/z — v/3).

graph

fz) = M

22 —9
(i~ V3
(z+3)(vVZ = V3)(Vr +V3)
1

(+3)(VT +3)

As 2 tends to 3, the reduced form of f tends to 1/(12y/3). Thus,

1
lim f(z) = lim f(z) = lim f(z) = 23
1
The discontinuity of f at x = 3 is removed by defining f(3) = m The
other discontinuities of f at + = —3 and x = —+/3 are essential discontinuities

and cannot be removed.

Even though calculus began intuitively, formal and precise definitions of
limit and continuity became necessary. These precise definitions have become
the foundations of calculus and its applications to the sciences. Let us assume
that a function f is defined in some open interval, (a,b), except possibly at
one point ¢, such that a < ¢ < b. Then we make the following definitions
using the Greek symbols: €, read “epsilon” and 9, read, “delta.”

2.1.2 Limit: Formal Definitions
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Definition 2.1.1 The limit of f(x) as x goes to ¢ from the right is L, if and
only if, for each € > 0, there exists some 6 > 0 such that

|f(x) — L| <€, whenever, c <z <c+90.

The statement that the limit of f(z) as x goes to ¢ from the right is L, is
expressed by the equation
lim f(z)= L.

r—ct

graph

Definition 2.1.2 The limit of f(x) as x goes to ¢ from the left is L, if and
only if, for each € > 0, there exists some ¢ > 0 such that

|f(z) — L| <€, whenever, c—0 <z <c.

The statement that the limit of f(x) as z goes to ¢ from the left is L, is
written as

lim f(x)=L.

Tr—Cc—

graph

Definition 2.1.3 The (two-sided) limit of f(x) as x goes to ¢ is L, if and
only if, for each € > 0, there exists some § > 0 such that

|f(z) — L| <€, whenever 0 < |z —c| <.

graph



2.1. INTUITIVE TREATMENT AND DEFINITIONS 43

The equation
lim f(z) = L

Tr—cC

is read “the (two-sided) limit of f(z) as x goes to ¢ equals L.”

2.1.3 Continuity: Formal Definitions

Definition 2.1.4 The function f is said to be continuous at ¢ from the right
if f(c) is defined, and

lim f(x) = f(c).

z—ct

Definition 2.1.5 The function f is said to be continuous at ¢ from the left
if f(c) is defined, and

lim f(z) = f(c).

Tr—Cc—

Definition 2.1.6 The function f is said to be (two-sided) continuous at ¢ if
f(c) is defined, and

lim f(z) = f(c).

r—cC

Remark 4 The continuity definition requires that the following conditions
be met if f is to be continuous at c:

(i) f(c) is defined as a finite real number,

(ii) lim f(z) exists and equals f(c),

Tr—Cc—

(i) lim f(x) exists and equals f(c),

r—ct

(iv) lim f(x) = f(c) = lim f(x).

T—c~ z—ct

When a function f is not continuous at ¢, one, or more, of these conditions
are not met.
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Remark 5 All polynomials, sinx,cosx, e®, sinh x, coshz,b*, b # 1 are con-
tinuous for all real values of z. All logarithmic functions, log, x,b > 0,b # 1
are continuous for all x > 0. Each rational function, p(z)/q(z), is continuous
where ¢(x) # 0. Each of the functions tan x, cot x, sec x, csc x, tanh z, coth z,
sech z, and csch z is continuous at each point of its domain.

Definition 2.1.7 (Algebra of functions) Let f and g be two functions that
have a common domain, say D. Then we define the following for all z in D:

L (f+9)(@) = f(x) + g(x) (sum of f and g)

2. (f—9)(x)=f(x)—g(x) (difference of f and g)

i xzmi T uotient o an
s (D)o =10 itgw) 20 (auotient of f and g

4. (9f)(@) = g(z)f(z) (product of f and g)

If the range of f is a subset of the domain of g, then we define the
composition, g o f, of f followed by g, as follows:

5. (g0 f)x) =g(f(x))

Remark 6 The following theorems on limits and continuity follow from the
definitions of limit and continuity.

Theorem 2.1.1 Suppose that for some real numbers L and M, lim f(z) = L
and lim g(x) = M. Then

(i) im k =k, where k is a constant function.

r—cC

(ii) i (f(z) + g(x)) = lim f(z) + lim ()

Tr—c Tr—c

(111) lim (f(z) —g(z)) = lim f(z)—lim g(x)

r—cC r—cC r—cC



2.1. INTUITIVE TREATMENT AND DEFINITIONS

(iv) lim (f(2)g(x)) = (lim f(a)) (lim g(x))

A fw)  mf)

Proof.
Part (i) Let f(z) =k for all x and € > 0 be given. Then

[f(x) = k[ =[k—k[=0<e

for all z. This completes the proof of Part (i).
For Parts (ii)—(v) let € > 0 be given and let

lim f(x) =L and limg(z) = M.
By definition there exist §; > 0 and d5 > 0 such that

|f(x) — L| < % whenever 0 < |z —c| <

lg(x) — M| < % whenever 0 < |z —¢| < &2

Part (ii) Let § = min(dy,2). Then 0 < |x — ¢| < § implies that
O<l|z—c <& and |f(z)-L|< % (by (1))
O<l|z—c|<d and |g(z)— M|< % (by (2))

Hence, if 0 < |x — ¢| < §, then

|(f(2) + g(2)) — (L + M)

VANVAN

This completes the proof of Part (ii).
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Part (iii) Let § be defined as in Part (ii). Then 0 < |z — ¢| < 6 implies that

|(f(2) = g(2)) = (L = M)| = [(f(z) = L) + (g9(x) = M)
|f(x) = L + [g(x) — M]|

€

€48
373
€.

IA I

VANVAN

This completes the proof of Part (iii).

Part (iv) Let € > 0 be given. Let

€
eo=min(1,—— .
1 < L+ L+ M \)
Then €; > 0 and, by definition, there exist §; and d5 such that

|f(z) — L] <& whenever 0<|z—c|<d (5)
lg(x) — M| < e, whenever 0 < |z —c¢| <ds (6)

Let 0 = min(dy,02). Then 0 < |z — ¢| < § implies that

O<|r—c|<d and |f(z)—L|<e (by (5)) (7)
O<|r—c|<dy and |g(x)— M| <e (by (6)) (8)

Also,

|f(x)g(z) — LM| = |(f(z) — L+ L)(g(x) — M + M) — LM|
= |(f(z) = L)(g9(z) — M) + (f(z) — L)M + L(g(z) — M)
<|f(z) = L| |g(x) — M|+ |f(z) + L[ [M| +|L] |g(z) — M|
< el + |Mlep + |L|ey
<€+ |Mley + | Lle
(14 [M]+ N ])er
<e

This completes the proof of Part (iv).

Part (v) Suppose that M > 0 and lim g(x) = M. Then we show that

r—cC
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Since M /2 > 0, there exists some d; > 0 such that

M
lg(z) — M| < - whenever 0 < |z —¢| < dy,
M 3M
- + M < g(x) < 5 whenever 0 < |z —¢| < 4y,
M 3M
0< 5 < g(x) < 3 whenever 0 < |z —¢| < dy,
1 2
< — whenever 0 < |z —c¢| <.
lg(x)] M

Let € > 0 be given. Let ¢ = M2€/2. Then ¢; > 0 and there exists some
0 > 0 such that < §; and

lg(x) — M| < e; whenever 0< |z —c|<d <,

'L _ i‘ _ M —g(@)| _ |g(x) — M|
glz) M g(x)M lg(2)|M
1 1
=7 lg(x) — M|
M- g(x)]
L2
MM
261
)
=¢ whenever 0 < |z —¢| <.

lim —— = — whenever M > 0.

The case for M < 0 can be proven in a similar manner. Now, we can use
Part (iv) to prove Part (v) as follows:

i 23—y (100 1)
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This completes the proof of Theorem 2.1.1.

Theorem 2.1.2 If f and g are two functions that are continuous on a com-
mon domain D, then the sum, f + g, the difference, f — g and the product,
fg, are continuous on D. Also, f/g is continuous at each point x in D such

that g(z) # 0.

Proof. 1f f and g are continuous at ¢, then f(c) and g(c) are real numbers
and

lim £ () = f(c), lim g(x) = g(c).

Tr—cC

By Theorem 2.1.1, we get

lim(f () + g(x)) = I
)

r—cC

lim(f(x) — g(x)) = I

r—cC Tr—cC r—cC

lim(f (2)g(x)) = (1 f(2)) lmn(g(x) = F(c)g(c)

F)\  limg_.f(z)  flc) .
<g(x)) T lim, . g(x)  gle)’ fg(c) #0

This completes the proof of Theorem 2.1.2.

lim

r—cC

2.1.4 Continuity Examples

Example 2.1.10 Show that the constant function f(z) = 4 is continuous at
every real number c. Show that for every constant k, f(x) = k is continuous

at every real number c.
First of all, if f(z) =4, then f(c) = 4. We need to show that

lim4 = 4.

r—cC

graph

For each € > 0, let § = 1. Then
[f(x) = fle)| =[4—4[=0<e
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for all « such that | — ¢| < 1. Secondly, for each € > 0, let 6 = 1. Then
()= Fe) =l — k| =0 < e

for all x such that |z — ¢| < 1. This completes the required proof.

Example 2.1.11 Show that f(z) = 3z — 4 is continuous at = = 3.
Let € > 0 be given. Then

[f(z) = FB3) = |8z — 4) = (5)]

= |3z — 9|
= 3|z — 3|
<e€

whenever |r — 3] < %

We define § = % Then, it follows that

lim f(z) = f(3)

r—3

and, hence, f is continuous at x = 3.

Example 2.1.12 Show that f(z) = z® is continuous at = = 2.
Since f(2) = 8, we need to prove that

lim 2® = 8 = 25.

r—2

graph

Let € > 0 be given. Let us concentrate our attention on the open interval
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(1,3) that contains x = 2 at its mid-point. Then

|f(z) = f(2)] = |* — 8] = |(z — 2)(a* + 2z + 4)|
= |z — 2| |2 + 22 + 4

< |z —2|(Jz]* + 2|z| +4) (Triangle Inequality |u + v| < |u| + |v|)

<l|z—2|(9+18+14)
= 31|z — 2|
<€
Provided .
—2| < .
o = 2] < 53
Since we are concentrating on the interval (1,3) for which |z — 2| < 1, we
need to define  to be the minimum of 1 and 3—61 Thus, if we define § =
min{1, e/31}, then
[f(z) = fF2) < e

whenever |z — 2| < §. By definition, f(z) is continuous at x = 2.

Example 2.1.13 Show that every polynomial P(z) is continuous at every
c.
From algebra, we recall that, by the Remainder Theorem,

P(z) = (x — ¢)Q(x) + P(c).

Thus,
[P(x) = P(c)] = |z — ¢f|Q(x)]
where () is a polynomial of degree one less than the degree of P(z). As
in Example 12, |Q(z)| is bounded on the closed interval [¢ — 1,¢ + 1]. For
example, if
Q) = qor" " + Q" P+ A guaT + g

Q)| < laol |="" +|au| [2"7 + -+ + lgn—z| |2] + [gn-a]-
Let m = max{|z| :¢c— 1 <z < c¢+1}. Then

]Q(x)| < ‘%‘mnil + ’(h’mniz + -+ gn2m + ‘anl‘ = M,
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for some M. Then
|P(x) — P(c)| = |z — | [Q(z)| < M|z — ¢ < ¢

whenever |z —¢| < % As in Example 12, we define § = min {1, %} Then
|P(z) — P(c)| < €, whenever |z — ¢| < 0. Hence,

lim P(x) = P(c)

Tr—cC

and by definition P(z) is continuous at each number c.

1
Example 2.1.14 Show that f(z) = — is continuous at every real number
T
c> 0.
We need to show that

.1 1
lim — = —.
z—c T C
c
Let € > 0 be given. Let us concentrate on the interval |z — ¢| < 5 that is,

g <z< % Clearly, x # 0 in this interval. Then

1
¢ |z|
1

o IN

C2€

whenever |r —¢| < —.

2
2
We define § = min {%, %} Then for all z such that |z — ¢| < 4,

1 1

T C

< €.
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Hence,
11
lim — = -
z—c T C

1
and the function f(z) = — is continuous at each ¢ > 0.
x

A similar argument can be used for ¢ < 0. The function f(z) = — is
T

continuous for all x # 0.

Example 2.1.15 Suppose that the domain of a function g contains an open
interval containing ¢, and the range of g contains an open interval containing
g(c). Suppose further that the domain of f contains the range of g. Show
that if g is continuous at ¢ and f is continuous at g(c), then the composition
f o g is continuous at c.

We need to show that

lim  f(g(x)) = f(g(c))-

r—C

Let € > 0 be given. Since f is continuous at g(c), there exists d; > 0 such
that

L. |f(y) — f(g(c))| < €, whenever, |y — g(c)| < 0.
Since g is continuous at ¢, and ¢; > 0, there exists 6 > 0 such that

2. |g(z) — g(c)| < 1, whenever, |z — | <.
On replacing y by g(z) in equation (1), we get
|f(9(x)) = f(g(c))| < e, whenever, |z —c| <.

By definition, it follows that
lim f(g(x)) = f(g(c))

r—cC

and the composition f o g is continuous at c.

Example 2.1.16 Suppose that two functions f and g have a common do-
main that contains one open interval containing c¢. Suppose further that f
and g are continuous at c¢. Then show that
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(i) f+ g is continuous at c,

(ii) f — g is continuous at c,

(ili) kf is continuous at ¢ for every constant k # 0,

(iv) f - g is continuous at c.

Part (i) We need to prove that

lim [f(2) + g(x)] = f(¢) + g(c).

r—cC

Let € > 0 be given. Then g > (. Since f is continuous at ¢ and % > 0, there

exists some 0; > 0 such that

(1) (2) = f(c)] < 5. whenever, |z — | < 4.

Also, since g is continuous at ¢ and % > 0, there exists some do > 0 such that
€ 0
(2) lg(x) —g(c)] < 2 whenever, |z —¢| < 3

Let 6 = min{d;,d2}. Then 6 > 0. Let |z — ¢| < §. Then |z — ¢| < §; and
|z — ¢| < 0,. For this choice of z, we get

{f(x) +g(z)} = {f(c) + g(c)}|
= [{f(z) = f(c)} + {g(z) — g(c)}|
<[f(x) = f(o)| +lg(z) —g(c)]  (by triangle inequality)
<if

€
2
€

It follows that
lim (f(z) +g(x)) = f(c) + g(c)

z—0

and f + g is continuous at ¢. This proves part (i).
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Part (ii) For Part (ii) we chose €,€/2,d1,0, and 0 exactly as in Part (i).
Suppose |x —¢| < 0. Then |z —¢| < §; and |x — ¢| < d,. For these choices of
T we get

[{f(x) —g(x)} = {f(c) = g(c)}]
= [{f(z) = f(c)} = {g(z) — g(c) }|
<[f(z) = flo)] + lg(x) —g(c)]  (by triangle inequality)
.-

It follows that
lim (f(x) —g(z)) = f(c) — g(c)

r—cC

and, hence, f — g is continuous at c.

Part (iii) For Part (iii) let € > 0 be given. Since k # 0, > (. Since f is

Ik!
continuous at ¢, there exists some § > 0 such that

whenever, |z —c¢| <.

If [x — ¢| < 0, then

kf(x) = kf(e)| = |k(f(z) = f(c))|
= [k| [(f(z) = f(c)]
< |kl - |6|

T

= €.

It follows that
lim kf(x) =kf(c)

r—cC

and, hence, kf is continuous at c.

Part (iv) We need to show that

lim (f(x)g(x)) = f(c)g(c).

r—cC
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Let € > 0 be given. Without loss of generality we may assume that € < 1.

€
A+ 1O+ 190D Then €; > 0,6 < 1 and (14 |f|+|g(c)]) =

3 < €. Since f is continuous at ¢ and €; > 0, there exists ¢; > 0 such that

Let €1 = 5

|f(z) — flo)] <& whenever, |z — ¢| < ¢;.
Also, since ¢ is continuous at ¢ and €; > 0, there exists d5 > 0 such that
lg(x) — g(c)| < ¢4 whenever, |z — c| < .

Let 6 = min{dy, 0,2} and |z — ¢| < §. For these choices of z, we get

= [(f(z) = f(c) () ) +9(0) = fc)g(o)]
= [(f(x) = F(e)(g(x) = g(c)) + (f(x) = f(e))g(c) + f(c)(g(x) — g(c))]
< [f() = F(O)] lg(x) = g() + [f(x) = F(O)] lg(e)| + [ F(c)] l9(x) = g(c)]

<ea(l+g +[f()]) , (since e <1)
<e.

It follows that
lim f(x)g(x) = f(c)g(c)

Tr—cC

and, hence, the product f - g is continuous at c.

Example 2.1.17 Show that the quotient f/g is continuous at ¢ if f and g
are continuous at ¢ and g(c) # 0.

First of all, let us observe that the function 1/g is a composition of g(x)
and 1/z and hence 1/g is continuous at ¢ by virtue of the arguments in
Examples 14 and 15. By the argument in Example 16, the product f(1/g) =
f/g is continuous at ¢, as required in Example 17.

Example 2.1.18 Show that a rational function of the form p(x)/q(z) is
continuous for all ¢ such that g(c) # 0.
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In Example 13, we showed that each polynomial function is continuous
at every real number c. Therefore, p(z) is continuous at every ¢ and ¢(z) is
continuous at every c¢. By virtue of the argument in Example 17, the quotient
p(x)/q(x) is continuous for all ¢ such that ¢(c) # 0.

Example 2.1.19 Suppose that f(x) < g(z) < h(z) for all  in an open
interval containing ¢ and

lim f(z)=1lim h(z) = L.

r—cC Tr—cC

Then, show that,
lim g(z) = L.

Tr—c

Let € > 0 be given. Then there exist 6; > 0, d2 > 0, and § = min{d;, ds}
such that

|f(z)—L| < % whenever 0 < |z — ¢| < 0y
|h(z) — L) < % whenever 0 < |z — ¢| < ds.
If 0 < |z—c| <dy, then 0 <|z—¢| <d1, 0<|r—c| < and, hence,
—§<ﬂ@—L<m@—L<mm—L<§
It follows that
lg(x) — L| < % < € whenever 0 < |z —¢| < 4,
and

lim g(z) = L.

r—cC

Example 2.1.20 Show that f(z) = |z| is continuous at 0.
We need to show that
hII(l) |z| = 0.

Let € > 0 be given. Let 0 = €. Then |z — 0] < € implies that |z| < € Hence,

lim |z[ =0
x—0
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Example 2.1.21 Show that

(i) lim sinf =0 (ii) lim cosf =1
0—0 0 0—0 1 9
oy o SN . — cos
(iii) élir[l) =1 (iv) élir(l) —g = 0

graph

Part (i) By definition, the point C(cosf,sinf), where 6 is the length of
the arc C'D, lies on the unit circle. It is clear that the length BC = sinf is
less than 6, the arclength of the arc C'D, for small positive . Hence,

—0 <sinf <40

and

lim sinf = 0.
6—0+

For small negative 6, we get
0 <sinf < -0

and

lim sinf = 0.
0—0—

Therefore,

lim sinf = 0.
6—0

Part (ii) Tt is clear that the point B approaches D as 6 tends to zero. There-
fore,

lim cos§ = 1.
0—0

Part (iii) Consider the inequality

Area of triangle ABC' < Area of sector ADC' < Area of triangle ADE

1 1 1 sin@
— Asind <=9 < = )
QCOS S = 2  — 2 cosf
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Assume that 6 is small but positive. Multiply each part of the inequality by
2/sin 6 to get

0 1
<

sinf — cos@

cosf <

On taking limits and using the squeeze theorem, we get

0
li =1.
60+ sin g
By taking reciprocals, we get
sin
li =1.
oot 0
Since
sin(—6)  sinf
-9 0
sin
lim — =1.
eil(-)r£ 0
Therefore,
. siné
e
Part (iv)
. 1—cosf® .  (1—cosf)(1l+cosb)
lim ——— = lim
6—0 0 6—0 O(1 + cosh)
i 1 —cos?6 1
= lim .
6—0 7 (14 cosf)
. sin 6 sin 6
= him .
0—0 6 1+ cosf
0
—1.-
2
=0.

Example 2.1.22 Show that

(i) sin# and cosf are continuous for all real 6.
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(ii) tan# and sec@ are continuous for all § # 2n7 £ g, n integer.

(iii) cot @ and csc @ are continuous for all § # n7w, n integer.

Part (i) First, we show that for all real ¢,

lim sinf = sinc or equivalently lim |sinf — sinc| = 0.
0—c

0—c

We observe that

: : 0+c .
0 < |sinf —sinc| = |2cos sin

< |2sin

Therefore, by squeeze theorem,

0§191m|sin6—sinc\§0~1:0.

It follows that for all real ¢,sin @ is continuous at c.
Next, we show that

lim cosx = cosc or equivalently lim |cosx — cosc| = 0.
r—cC

Tr—cC

We observe that

0 <|cosx —cosc| = ’—QSinx+C sin (z=c)

a

0 <lim|cosz —cosc| <0-1=0

r—cC

Therefore,

and cos z is continuous at c.
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Part (i) Since for all § # 2nm + 7, n integer,

cos

it follows that tan @ and sec 8 are continuous functions.

Part (1ii) Both cot 6 and csc 6 are continuous as quotients of two continuous
functions where the denominators are not zero for n # nmw, n integer.

Exercises 2.1 Evaluate each of the following limits.

21 in(2 in b
1. lim 2 5. fim 27 3 lim 22t
z—1 3 —1 z—0 T z—0 sin7x
. 1 . 1 . T — 2
4. xlggr x2—4 g xlggl— x2—4 0. ilig x2—4
Tr— 2 r—2 r—2
7. li 8 1 9. i
ezt |z — 2| e |z — 2| 223 |z — 2|
29 2_9
10. lim = 11. lim = 12. lim tan z
=3 T — 3 z—3 T+ 3 T
13. lim tanz 14. lim csczx 15. lim cscxz
f*)%“r z—0— x—0T
16. lim cotx 17. lim cotx 18. lim seczx
z—0t x—0~ x—>%+
in 2 1 -2
19. lim sec 20, fim S2T s o1 1im Y
x—»% z—0 €T z—4— T —4
-2 -2 481
2. 1im Y© 23 lim V7" 24, lim =
z—dt+ x —4 =4 g —4 =3 12 —-9

Sketch the graph of each of the following functions. Determine all the
discontinuities of these functions and classify them as (a) removable type,
(b) finite jump type, (c) essential type, (d) oscillation type, or other types.
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r—1 T —2 T
25. =2 — 26. =
2x for x <0 | sinz if x <0
27'f(x):{x2+1 for z > 0 28. f(x)_{sin(%) ifz >0
r—1 lz—1] ifx<1
29. = 30. = e
Ll e ey f(z) {|x—2| itz > 1
: : 0 itz<0
Recall the unit step function u(z) = { | ifz>0.

Sketch the graph of each of the following functions and determine the left
hand limit and the right hand limit at each point of discontinuity of f and

g.
31. f(z) =2u(zr — 3) —u(x —4)

32. f(x) = —2u(x — 1) 4+ 4u(z — 5)

33. f(z)=u(r —1) 4+ 2u(x + 1) — 3u(z — 2)

M f@)=sinz[u(e+5) —ule-3)]

35. g(r) = (tanx) [u (x + g) —u (m — g)}

36. f(z) = [u(z) —u(zx — 7)] cosz

2.2 Linear Function Approximations

One simple application of limits is to approximate a function f(x), in a small
neighborhood of a point ¢, by a line. The approximating line is called the
tangent line. We begin with a review of the equations of a line.

A vertical line has an equation of the form z = ¢. A vertical line has no
slope. A horizontal line has an equation of the form y = ¢. A horizontal
line has slope zero. A line that is neither horizontal nor vertical is called an
oblique line.
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Suppose that an oblique line passes through two points, say (z1,y;) and
(x2,y2). Then the slope of this line is define as

Y= Y1 — Y2
To — 1 xl_l’2.

m

If (z,y) is any arbitrary point on the above oblique line, then

_Y"HNh _ Y~y
rT—1T T —To

m

By equating the two forms of the slope m we get an equation of the line:

Y=—% _Y%—h or Y=—% _Y%—nh
T—T1 Ty — T T — Ty XTy— T

On multiplying through, we get the “two point” form of the equation of the
line, namely,

. (x —x1) or y—y2:u (x — xg).
To — X1 Ty — 1

Yy—1m4

Example 2.2.1 Find the equations of the lines passing through the follow-
ing pairs of points:

(i) (4,2) and (6,2) (ii) (1,3) and (1,5
(iii) (3,4) and (5, —2) (iv) (0,2) and (4,0).

Part (i) Since the y-coordinates of both points are the same, the line is
horizontal and has the equation y = 2. This line has slope 0.

Part (ii) Since the x-coordinates of both points are equal, the line is vertical
and has the equation z = 1.

Part (iii) The slope of the line is given by

-2—-4

= —3.
5—3

m =

The equation of this line is

y—4=-3x—-3) or y+2=-3(x-5).
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On solving for y, we get the equation of the line as
y = —3x 4+ 13.

This line goes through the point (0,13). The number 13 is called the y-
intercept. The above equation is called the slope-intercept form of the line.

Example 2.2.2 Determine the equations of the lines satisfying the given
conditions:

(i) slope = 3, passes through (2,4)
(ii) slope = —2, passes through (1, —3)

)
)
(iii) slope = m, passes through (z1,y;)
(iv) passes through (3,0) and (0,4)

)

(v) passes through (a,0) and (0,b)

Part (i) If (z,y) is on the line, then we equate the slopes and simplify:

_y—4

3
Tz —2

or y—4=3(x—2).

Part (i) If (z,y) is on the line, then we equate slopes and simplify:

_y+3
-1

-2

or y+3=-2(x—1).

Part (iii) On equating slopes and clearing fractions, we get

Yy—nmn
Tr — T

or y—1u :m(x—ﬂl?l)-

This form of the line is called the “point-slope” form of the line.
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Part (iv) Using the two forms of the line we get

y—0 4-0 4
= — =——(z—3).
=3 o-3 @ v 33
If we divide by 4 we get
Ty
3 4 '

The number 3 is called the z-intercept and the number 4 is called the y-
intercept of the line. This form of the equation is called the “two-intercept”
form of the line.

Part (v) As in Part (iv), the “two-intercept” form of the line has the equation

r oy
ATy
a+b

In order to approximate a function f at the point ¢, we first define the slope
m of the line that is tangent to the graph of f at the point (¢, f(c)).

graph

)]

Tr—cC Tr — C

Then the equation of the tangent line is

y = [fle)=m(z —c),

written in the point-slope form. The point (¢, f(c)) is called the point of
tangency. This tangent line is called the linear approximation of f about
T =c.

Example 2.2.3 Find the equation of the line tangent to the graph of f(x) =
x? at the point (2,4).
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The slope m of the tangent line at (3,9) is

. 2 —9
m = lim
z—3 T — 3
= lim (x+3)
= 0.

The equation of the tangent line at (3,9) is

y—9=6(zx—3).

Example 2.2.4 Obtain the equation of the line tangent to the graph of

f(z) = /x at the point (9, 3).
The slope m of the tangent line is given by

m = lim Vo =3

z—9 x—9

L (E-3)(/EH
M -0 (E )
. z—9

~ M G 9)(VE+3)
) 1

=y

_1

-1

Example 2.2.5 Derive the equation of the line tangent to the graph of

w1
= si t =, = .
f(z) =sinzx a (6’ 5
The slope m of the tangent line is given by
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m = lim —
2 cos <$+;/6> sin <$7;/6>
= lim
a—% (z —7/6)

= cos(m/6)
V3

5

The equation of the tangent line is

y— 5= T— =

V3 s
;=5 (- 5)

Example 2.2.6 Derive the formulas for the slope and the equation of the
line tangent to the graph of f(z) =sinz at (¢, sinc).
As in Example 27, replacing 7/6 by ¢, we get

sinx — sinc

m = lim
z—c T —C
m 2 cos () sin (%5¢)
p—c r—c

= lim cos (:c;—c) - lim @

= COS C.

Therefore the slope of the line tangent to the graph of f(z) = sinx at (¢, sinc)
is cos c.
The equation of the tangent line is

y — sinc = (cosc)(z — ¢).
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Example 2.2.7 Derive the formulas for the slope, m, and the equation of

the line tangent to the graph of f(z) = cosx at (¢,cosc). Then determine
32

As in Example 28, we replace the sine function with the cosine function,

1
the slope and the equation of the tangent line at (7T )

COSTX — COSC

m = lim
z—c r—c
— lim —2sin (%J“C) sin (%)
z—c T—c

= lim sin (:1: ;_ C) lim —Si <%)

Tr—cC

= —sin(c).
The equation of the tangent line is
y—cosc = —sinc(x — ¢).

s V3

For ¢ = g, slope = —sin <§) =->5 and the equation of the tangent line

2 2

Example 2.2.8 Derive the formulas for the slope, m, and the equation of
the line tangent to the graph of f(x) = z™ at the point (¢, ™), where n is a
natural number. Then get the slope and the equation of the tangent line for
c=2,n=4.

By definition, the slope m is given by

" — "

m = lim )
T—c T —C

To compute this limit for the general natural number n, it is convenient to
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let x = ¢+ h. Then

m = lim —(c+h) — ¢
h—0 h

-1
[(C +ncn 1h+ (n )Cn_2h2+"'+hn) _Cn:|

= lim
21

1
h—0 h
1 -1
= lim — {nc" 'h+ n{n —1) IR 4 h"}
h—0 h 21
—1
1

= lim
21

h—0

= nc"
Therefore, the equation of the tangent line through (¢, ¢") is
y—c"=nc" "z —c).

For n = 4 and ¢ = 2, we find the slope, m, and equation for the tangent line
to the graph of f(x) = z* at ¢ = 2:

m = 4c* = 32
y—2'=32(x—2) or y—16=32(z —2).

Definition 2.2.1 Suppose that a function f is defined on a closed interval
[a,b] and a < ¢ < b. Then c¢ is called a critical point of f if the slope of the
line tangent to the graph of f at (¢, f(c)) is zero or undefined. The slope
function of f at c is defined by

fle+h) = f(e)

slope (f(z),c) = lim

h—0 h
= lim M
T—C r —cC

Example 2.2.9 Determine the slope functions and critical points of the
following functions:

(i) f(z) =sinz, 0 <x <27 (ii) f(x) =cosz, 0 <x <27
(iii) f(z)=lz|, -1 <z <1 (iv) flz)=2% -4z, —2<2<2
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Part (i) In Example 28, we derived the slope function formula for sinzx,
namely
slope (sinz, c) = cosc.

Since cos ¢ is defined for all ¢, the non-end point critical points on [0, 27]
are /2 and 37/2 where the cosine has a zero value. These critical points
correspond to the maximum and minimum values of sin x.

Part (i) In Example 29, we derived the slope function formula for cosz,
namely
slope (cosz,c) = —sine.

The critical points are obtained by solving the following equation for c:
—sinec=0, 0<c< 27
c=0,m,2m.
These values of ¢ correspond to the maximum value of cosx at ¢ = 0 and 2,

and the minimum value of cosz at ¢ = .

Part (iii)  slope (|z|,¢) = lim J2] = Il
Tr—cC Tr — C

2] = lel =] + ||

= lim
e Te i

x?—c?

= G o+ 1)

T+c
a—e |z| +|d]

B 2c
2|
_ ¢
||

1 ife>0

= —1 ife<0

undefined if ¢=0
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The only critical point is ¢ = 0, where the slope function is undefined. This
critical point corresponds to the minimum value of |z| at ¢ = 0. The slope
function is undefined because the tangent line does not exist at ¢ = 0. There
is a sharp corner at ¢ = 0.

Part (i) The slope function for f(x) = 23 — 4x is obtained as follows:

slope (f(z),¢) = lim — [((c+h)* —4(c+ h)) — (¢* — 4c)]

h—0

= lim

lim [¢® +3ch + 3ch? + h* — dc — 4h — ¢ + 4(]

el I

= lim [3¢’h + 3ch? + h* — 4h)]

= }llir% [3¢* + 3ch + h* — 4]
=3 —4

graph

The critical points are obtained by solving the following equation for c:

— 16 2
At ¢ = —, f has a local maximum value of —= and at ¢ = —, f has a

V3 33 V3

—16
local minimum value of Wik The end point (—2,0) has a local end-point

minimum and the end point (2,0) has a local end-point maximum.

Remark 7 The zeros and the critical points of a function are helpful in
sketching the graph of a function.
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Exercises 2.2

1.

Express the equations of the lines satisfying the given information in the
form y = mx + b.
(a) Line passing through (2,4) and (5, —2)
(b) Line passing through (1,1) and (3,4)
c¢) Line with slope 3 which passes through (2, 1)

Line with slope 2 and z-intercept 3

)
)
()
(d) Line with slope 3 and y-intercept 4
e)
)

(
(f

Line with z-intercept 2 and y-intercept 4.

Two oblique lines are parallel if they have the same slope. Two oblique
lines are perpendicular if the product of their slopes is —1. Using this
information, solve the following problems:

(a) Find the equation of a line that is parallel to the line with equation
y = 3x — 2 which passes through (1,4).
(b) Solve problem (a) when “parallel” is changed to “perpendicular.”

(c¢) Find the equation of a line with y-intercept 4 which is parallel to
y=—3x+ 1.

(d) Solve problem (c) when “parallel” is changed to “perpendicular.”
(e) Find the equation of a line that passes through (1,1) and is

(i) parallel to the line with equation 2z — 3y = 6.
(ii) perpendicular to the line with equation 3z + 2y = 6

For each of the following functions f(z) and values c,

(i) derive the slope function, slope (f(z),¢) for arbitrary c;

(ii) determine the equations of the tangent line and normal line (perpen-
dicular to tangent line) at the point (¢, f(c)) for the given ¢;

(iii) determine all of the critical points (¢, f(c)).
(a) f(z) =2 =22, c=3
(b) flz) =2 , c=1
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2.3 Limits and Sequences

We begin with the definitions of sets, sequences, and the completeness prop-
erty, and state some important results. If z is an element of a set S, we write
r € S, read “x is in S.” If z is not an element of S, then we write z ¢ S,
read “x is not in S.”

Definition 2.3.1 If A and B are two sets of real numbers, then we define

ANB={z:x€ Aand x € B}
and

AUB={xz:x € Aorz € B or both}.

We read “AN B” as the “intersection of A and B.” We read “AU B” as the
“union of A and B.” If AN B is the empty set, (), then we write AN B = ().

Definition 2.3.2 Let A be a set of real numbers. Then a number m is said
to be an upper bound of A if x < m for all z € A. The number m is said to
be a least upper bound of A, written lub(A) if and only if,

(i) m is an upper bound of A, and,

(ii) if ¢ < m, then there is some x € A such that ¢ <z <m.

Definition 2.3.3 Let B be a set of real numbers. Then a number /¢ is said
to be a lower bound of B if ¢ < y for each y € B. This number / is said to
be the greatest lower bound of B, written, glb(b), if and only if,

(i) £ is a lower bound of B, and,
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(ii) if ¢ < p, then there is some element y € B such that ¢ <y < p.

Definition 2.3.4 A real number p is said to be a limit point of a set S if
and only if every open interval that contains p also contains an element ¢ of
S such that g # p.

Example 2.3.1 Suppose A = [1,10] and B = [5, 15].

Then ANB = [5,10], AUB = [1,15], glb(A) = 1, lub(A) = 10, glb(B) =5
and lub(B) = 15. Each element of A is a limit point of A and each element
of B is a limit point of B.

1
Example 2.3.2 Let S = {— : n is a natural number ;.
n

Then no element of S is a limit point of S. The number 0 is the only
limit point of S. Also, glb(S) = 0 and lub(S) = 1.
Completeness Property: The completeness property of the set R of all real
numbers states that if A is a non-empty set of real numbers and A has an
upper bound, then A has a least upper bound which is a real number.

Theorem 2.3.1 If B is a non-empty set of real numbers and B has a lower
bound, then B has a greatest lower bound which is a real number.

Proof. Let m denote a lower bound for B. Then m < z for every x € B.
Let A = {—z : 2 € B}. then —x < —m for every z € B. Hence, A is a

non-empty set that has an upper bound —m. By the completeness property,
A has a least upper bound lub(A). Then, -lub(A) = glb(B) and the proof is

complete.

Theorem 2.3.2 If ©1 and xo are real numbers such that x1 < w9, then

1
T < 5(1)1 +SL’2> < Zs.

Proof. We observe that
1
< 5(:c1+:c2) < Tg > 201 < 11+ X9 < 279
— 1 < To <x2+(w2—x1).

This completes the proof.
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Theorem 2.3.3 Suppose that A is a non-empty set of real numbers and
m = lub(A). If m & A, then m is a limit point of A.

Proof. Let an open interval (a,b) contain m. That is, a < m < b. By the
definition of a least upper bound, a is not an upper bound for A. Therefore,
there exists some element ¢q of A such that a < ¢ < m < b. Thus, every open
interval (a,b) that contains m must contain a point of A other than m. It
follows that m is a limit point of A.

Theorem 2.3.4 (Dedekind-Cut Property). The set R of all real numbers is
not the union of two non-empty sets A and B such that

(i) if v € A andy € B, then x < y,
(ii) A contains no limit point of B, and,

(i1i) B contains no limit point of A.

Proof. Suppose that R = AU B where A and B are non-empty sets that
satisfy conditions (i), (ii) and (iii). Since A and B are non-empty, there exist
real numbers a and b such that a € A and b € B. By property (i), a is
a lower bound for B and b is an upper bound for A. By the completeness
property and theorem 2.3.1, A has a least upper bound, say m, and B has a
greatest lower bound, say M. If m ¢ A, then m is a limit point of A. Since
B contains no limit point of A, m € A. Similarly, M € B. It follows that
m < M by condition (i). However, by Theorem 2.3.2,

1

1
The number —(m + M) is neither in A nor in B. This is a contradiction,
because R = AU B. This completes the proof.

Definition 2.3.5 An empty set is considered to be a finite set. A non-empty
set S is said to be finite if there exists a natural number n and a one-to-one
function that maps S onto the set {1,2,3,... ,n}. Then we say that S has n
elements. If S is not a finite set, then S is said to be an infinite set. We say
that an infinite set has an infinite number of elements. Two sets are said to
have the same number of elements if there exists a one-to-one correspondence
between them.
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Example 2.3.3 Let A = {a,b,c}, B={1,2,3},C ={1,2,3,...},and D =
{0,1,-1,2,-2,...}.

In this example, A and B are finite sets and contain three elements each.
The sets C' and D are infinite sets and have the same number of elements. A
one-to-one correspondence f between n, C' and D can be defined as f : C' —

D such that
f(1)=0, f(2n) =nand f2n+1)=—nforn=1,2,3,....

Definition 2.3.6 A set that has the same number of elements as C =
{1,2,3,...} is said to be countable. An infinite set that is not countable
is said to be uncountable.

Remark 8 The set of all rational numbers is countable but the set of all real
numbers is uncountable.

Definition 2.3.7 A sequence is a function, say f, whose domain is the set
of all natural numbers. It is customary to use the notation f(n) = a,,n =
1,2,3,.... We express the sequence as a list without braces to avoid confusion
with the set notation:

. oo
a1,a2,as3, ... ,qpn,... or,simply, {a,}oo;.

The number a,, is called the nth term of the sequence. The sequence is said
to converge to the limit a if for every € > 0, there exists some natural number,
say N, such that |a,, —a| < € for all m > N. We express this convergence
by writing

lim a, = a.

n—oo

If a sequence does not converge to a limit, it is said to diverge or be divergent.

Example 2.3.4 For each natural number n, let

(1"

n

an = (_]-)na bn - 2—717 Cp = 2717 dn -

The sequence {a,} does not converge because its terms oscillate between —1
and 1. The sequence {b,} converges to 0. The sequence {c,} diverges to cc.
The sequence {d,} converges to 0.
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Definition 2.3.8 A sequence {a,};°, diverges to oo if, for every natural
number NN, there exists some m such that

Amyj > N forall j=1,2,3,---

The sequence {a,}72, is said to diverge to —oo if, for every natural number
N, there exists some m such that

Umy; < =N, forall j=1,2,3,... .

Theorem 2.3.5 If p is a limit point of a non-empty set A, then every open
interval that contains p must contain an infinite subset of A.

Proof. Let some open interval (a,b) contain p. Suppose that there are only
two finite subsets {a1, as,... ,a,} and {by, b, ... , b, } of distinct elements of
A such that

a<a <Ay < <, <p<by <b,_1<---<b <b.

Then the open interval (a,, b,,) contains p but no other points of A distinct
from p. Hence p is not a limit point of A. The contradiction proves the
theorem.

Theorem 2.3.6 If p is a limit point of a non-empty set A, then there exists
a sequence {p,}°°,, of distinct points p, of A, that converges to p.

1
Proof. Let ay =p— 37
and a; < pp <p<biora; <p<p <b. If a; < p; <p < by, then define

1
by =p+ 5 Choose a point p; of A such that p; # p

1 1 1
?} and by = p + 7 Otherwise, define as = p — % and

1
by = min {pl,p + ?} Then the open interval (as, bs) contains p but not p;

and by — as < —. We repeat this process indefinitely to select the sequence

{pn}, of distinct points p, of A, that converges to p. The fact that {p,} is an
infinite sequence is guaranteed by Theorem 2.3.5. This completes the proof.

Theorem 2.3.7 Every bounded infinite set A has at least one limit point p
and there ezists a sequence {p,}>,, of distinct points of A, that converges
to p.
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Proof. We will show that A has a limit point. Since A is bounded, there
exists an open interval (a,b) that contains all points of A. Then either

2
infinite subset of A. Pick one of the two intervals that contains an infinite

subset of A. Let this interval be denoted (a;,b;). We continue this process

repeatedly to get an open interval (a,, b,) that contains an infinite subset of
h—

A and |b, — a,| = |27na|' Then the lub of the set {a,,as,...} and glb of

the set {b1,bs,...} are equal to some real number p. It follows that p is a

limit point of A. By Theorem 2.3.6, there exists a sequence {p,}, of distinct

points of A, that converges to p. This completes the proof.

1 1
a, —(a+ b)) contains an infinite subset of A or (i(a +b), b) contains an

Definition 2.3.9 A set is said to be a closed set if it contains all of its limit
points. The complement of a closed set is said to be an open set. (Recall
that the complement of Ais {x € R:x ¢ A}.)

Theorem 2.3.8 The interval |a,b] is a closed and bounded set. Its comple-
ment (—oo,a) U (b,00) is an open set.

Proof. Let p € (—o0,a) U (b,00). Then —oco < p < aorb<p < oco. The
. 1 1 1 1 . .. .
intervals ( p — 5 é(a +p) | or 5(1) +p),p+ 5 contain no limit point of
[a,b]. Thus [a,b] must contain its limit points, because they are not in the
complement.

Theorem 2.3.9 If a non-empty set A has no upper bound, then there exists
a sequence {p, 22, of distinct points of A, that diverges to co. Furthermore,
every subsequence of {p,}52, diverges to oo

Proof. Since 1 is not an upper bound of A, there exists an element p; of A
such that 1 < p;. Let a; = max{2,p;}. Choose a point, say p,, of A such
that a; < ps. By repeating this process indefinitely, we get the sequence
{pn} such that p, > n and p; < ps < p3 < ... . Clearly, the sequence
{pn}22, diverges to co. It is easy to see that every subsequence of {p,}5°,
also diverges to oo.

Theorem 2.3.10 If a non-empty set B has no lower bound, then there exists
a sequence {qn}22,, of distinct points of B, that diverges to —oo. Further-
more, every subsequence of {q,}5°, diverges to —oo.
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Proof. Let A ={—x:2 € B}. Then A has no upper bound. By Theorem
2.3.9, there exists a sequence {p, }°°,, of distinct points of A, that diverges to
oo. Let g, = —pn. Then {q,}5°, is a sequence that meets the requirements
of the Theorem 2.3.10. Also, every subsequence of {g,}>>, diverges to —oo.

Theorem 2.3.11 Let {p,}5°, be a sequence of points of a closed set S that
converges to a point p of S. If f is a function that is continuous on S, then
the sequence {f(pn)}oe, converges to f(p). That is, continuous functions
preserve convergence of sequences on closed sets.

Proof. Let € > 0 be given. Since f is continuous at p, there exists a 6 > 0
such that

|f(z) — f(p)| <€ whenever |z—p|l <, andxe€S.

The open interval (p — 4, p+ ) contains the limit point p of S. The sequence
{pn}>2, converges to p. There exists some natural numbers N such that for
alln > N,

p—0<p,<p+0.

Then
|f(pn) — f(p)] <€ whenever n > N.

By definition, {f(p,)}22,; converges to f(p). We write this statement in the
following notation:

lim f(p,) = f ( lim p, ) .
That is, continuous functions allow the interchange of taking the limit and
applying the function. This completes the proof of the theorem.

Corollary 1 IfS is a closed and bounded interval [a,b], then Theorem 2.3.11
is valid for |a,b].

Theorem 2.3.12 Let a function f be defined and continuous on a closed
and bounded set S. Let Ry = {f(x) : x € S}. Then Ry is bounded.

roof. Suppose tha as no upper bound. Then there exists a sequence
P S that Ry h bound. Then th ist
Tn) oo, of distinct points o , that diverges to oc. e se =
> . of distinct points of Ry, that diverges t The set A
{x1,x9,...} is an infinite subset of S. By Theorem 2.3.7, the set A has
some limit point, say p. Since S is closed, p € S. There exists a sequence
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{pn}22,, of distinct points of A that converges to p. By the continuity of
FoAf ()}, converges to f(p). Without loss of generality, we may assume
that {f(p,)}52, is a subsequence of {f(x,)}22,. Hence {f(p,)}2, diverges
to 0o, and f(p) = co. This is a contradiction, because f(p) is a real number.
This completes the proof of the theorem.

Theorem 2.3.13 Let a function f be defined and continuous on a closed
and bounded set S. Let Ry = {f(z) : x € S}. Then Ry is a closed set.

Proof. Let ¢ be a limit point of R;. Then there exists a sequence { f(z,,)}52,
of distinct points of Ry, that converges to ¢. As in Theorem 2.3.12, the set
A = {x1,29,...} has a limit point p,p € S, and there exists a subsequence
{pn}oey, of {z,}52, that converges to p. Since f is defined and continuous
on S,

g = lim f(pn) = f (Jggopn) = f(p)-

Therefore, ¢ € Ry and Ry is a closed set. This completes the proof of the
theorem.

Theorem 2.3.14 Let a function f be defined and continuous on a closed

and bounded set S. Then there exist two numbers ¢; and ¢y tn S such that
forallz € S,

fler) < f(x) < f(ea)-

Proof. By Theorems 2.3.12 and 2.3.13, the range, Ry, of f is a closed and
bounded set. Let
m = glb(Ry) and M = lub(Ry).

Since Ry is a closed set, m and M are in R¢. Hence, there exist two numbers,
say c; and ¢y, in S such that

m = f(er) and M = f(c).
This completes the proof of the theorem.

Definition 2.3.10 A set S of real numbers is said to be compact, if and
only if S is closed and bounded.

Theorem 2.3.15 A continuous function maps compact subsets of its domain
onto compact subsets of its range.
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Proof. Theorems 2.3.13 and 2.3.14 together prove Theorem 2.1.15.

Definition 2.3.11 Suppose that a function f is defined and continuous on
a compact set S. A number m is said to be an absolute minimum of f on S
if m < f(z) for all x € S and m = f(c) for some ¢ in S.

A number M is said to be an absolute mazimum of f on S if M > f(x)
for all z € S and M = f(d) for some d in S.

Theorem 2.3.16 Suppose that a function f is continuous on a compact set
S. Then there exist two points ¢ and ¢z in S such that f(cy) is the absolute
minimum and f(c2) is the absolute maximum of f on S.

Proof. Theorem 2.3.14 proves Theorem 2.3.16.
Exercises 2.3

1. Find lub(A), glb(A) and determine all of the limit points of A.

(a) A={x:1<22<2}
(b) A={x:xsin(1/z), z >0}
(c) A= {2*3: -8 <z <38}
(d) A={z:2 <2 <5}

)

(e) A= {x:zis arational number and 2 < 2* < 5}

2. Determine whether or not the following sequences converge. Find the
limit of the convergent sequences.

o (i),
o) {5
NE.,

o {75l
(©) {1+ -1k,
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3. Show that the Dedekind-Cut Property is equivalent to the completeness
property.

4. Show that a convergent sequence cannot have more than one limit point.

5. Show that the following principle of mathematical induction is valid: If
1 €S, and k+1 € S whenever k£ € S, then S contains the set of all
natural numbers. (Hint: Let A={n:n ¢ S}. A is bounded from below
by 2. Let m = glb(A). Then k=m—-1€ Sbut k+1=m ¢ S. This is
a contradiction.)

6. Prove that every rational number is a limit point of the set of all rational
numbers.

7. Let {a,}2, be a sequence of real numbers. Then
(i)
(ii)

(iii) {a,}5°, is said to be non-increasing if a,, > a1 for all n.

{a,}22, is said to be increasing if a, < a,41, for all n.

{a,}52, is said to be non-decreasing if a,, < a,41 for all n.

)
(iv) {an}22, is said to be decreasing if a,, > a,1 for all n.
)

(v) {a,}52, is said to be monotone if it is increasing, non-decreasing,
non-increasing or decreasing.

(a) Determine which sequences in Exercise 2 are monotone.

b) Show that every bounded monotone sequence converges to some
g
point.

(¢) A sequence {b,,}5°_, is said to be a subsequence of the {a,}>2 , if and
only if every b,, is equal to some a,, and if

by, = an, and by, =a,, and n; <ng, then m; < ms.

That is, a subsequence preserves the order of the parent sequence.
Show that if {a,}, converges to p, then every subsequence of
{a,}22, also converges to p

(d) Show that a divergent sequence may contain one or more convergent
sequences.



82

CHAPTER 2. LIMITS AND CONTINUITY

(e) In problems 2(c) and 2(e), find two convergent subsequences of each.
Do the parent sequences also converge?

(Cauchy Criterion) A sequence {a, }>° is said to satisfy a Cauchy Crite-
rion, or be a Cauchy sequence, if and only if for every € > 0, there exists
some natural number N such that (a, — a,,) < € whenever n > N and
m > N. Show that a sequence {a,}>, converges if and only if it is a
Cauchy sequence. (Hint: (i) If {a,} converges to p, then for every € > 0
there exists some N such that if n > N, then |a, —p| < €/2. If m > N
and n > N, then

an = am| = [(an —p) + (p — am)|

< |an = p| + [@m — p| (why?)
< € + €

—+-=c

2" 9

So, if {a,} converges, then it is Cauchy.

(ii) Suppose {a,} is Cauchy. Let € > 0. Then there exists N > 0 such
that
|a, — a,,| < € whenever n > N and m > N.

In particular,
|a, —ay| <€ whenever n > N.

Argue that the sequence {a,} is bounded. Unless an element is repeated
infinitely many times, the set consisting of elements of the sequence has a
limit point. Either way, it has a convergent subsequence that converges,
say to p. Then show that the Cauchy Criterion forces the parent sequence
{a,} to converge to p also.)

Show that the set of all rational numbers is countable. (Hint: First show
that the positive rationals are countable. List them in reduced form
without repeating according to denominators, as follows:

—

NN W =

RN R,rRO
N O NIG, Wl  N)
TN DN W
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10.

11.

12.

Count them as shown, one-by-one. That is, list them as follows:

1 1
0717 a? o) §a2737 §7 27 17 17 .
2°3 2 2°3 4" 5

Next, insert the negative rational right after its absolute value,