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Chapter 1

Functions

In this chapter we review the basic concepts of functions, polynomial func-
tions, rational functions, trigonometric functions, logarithmic functions, ex-
ponential functions, hyperbolic functions, algebra of functions, composition
of functions and inverses of functions.

1.1 The Concept of a Function

Basically, a function f relates each element x of a set, say Df , with exactly
one element y of another set, say Rf . We say that Df is the domain of f and
Rf is the range of f and express the relationship by the equation y = f(x).
It is customary to say that the symbol x is an independent variable and the
symbol y is the dependent variable.

Example 1.1.1 Let Df = {a, b, c}, Rf = {1, 2, 3} and f(a) = 1, f(b) = 2
and f(c) = 3. Sketch the graph of f .

graph

Example 1.1.2 Sketch the graph of f(x) = |x|.
Let Df be the set of all real numbers and Rf be the set of all non-negative

real numbers. For each x in Df , let y = |x| in Rf . In this case, f(x) = |x|,

2
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the absolute value of x. Recall that

|x| =
{

x if x ≥ 0
−x if x < 0

We note that f(0) = 0, f(1) = 1 and f(−1) = 1.
If the domain Df and the range Rf of a function f are both subsets

of the set of all real numbers, then the graph of f is the set of all ordered
pairs (x, f(x)) such that x is in Df . This graph may be sketched in the xy-
coordinate plane, using y = f(x). The graph of the absolute value function
in Example 2 is sketched as follows:

graph

Example 1.1.3 Sketch the graph of

f(x) =
√
x− 4.

In order that the range of f contain real numbers only, we must impose
the restriction that x ≥ 4. Thus, the domain Df contains the set of all real
numbers x such that x ≥ 4. The range Rf will consist of all real numbers y
such that y ≥ 0. The graph of f is sketched below.

graph

Example 1.1.4 A useful function in engineering is the unit step function,
u, defined as follows:

u(x) =

{
0 if x < 0
1 if x ≥ 0

The graph of u(x) has an upward jump at x = 0. Its graph is given below.
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graph

Example 1.1.5 Sketch the graph of

f(x) =
x

x2 − 4
.

It is clear that Df consists of all real numbers x 6= ±2. The graph of f is
given below.

graph

We observe several things about the graph of this function. First of all,
the graph has three distinct pieces, separated by the dotted vertical lines
x = −2 and x = 2. These vertical lines, x = ±2, are called the vertical
asymptotes. Secondly, for large positive and negative values of x, f(x) tends
to zero. For this reason, the x-axis, with equation y = 0, is called a horizontal
asymptote.

Let f be a function whose domain Df and range Rf are sets of real
numbers. Then f is said to be even if f(x) = f(−x) for all x in Df . And
f is said to be odd if f(−x) = −f(x) for all x in Df . Also, f is said to be
one-to-one if f(x1) = f(x2) implies that x1 = x2.

Example 1.1.6 Sketch the graph of f(x) = x4 − x2.
This function f is even because for all x we have

f(−x) = (−x)4 − (−x)2 = x4 − x2 = f(x).

The graph of f is symmetric to the y-axis because (x, f(x)) and (−x, f(x)) are
on the graph for every x. The graph of an even function is always symmetric
to the y-axis. The graph of f is given below.

graph
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This function f is not one-to-one because f(−1) = f(1).

Example 1.1.7 Sketch the graph of g(x) = x3 − 3x.
The function g is an odd function because for each x,

g(−x) = (−x)3 − 3(−x) = −x3 + 3x = −(x3 − 3x) = −g(x).

The graph of this function g is symmetric to the origin because (x, g(x))
and (−x,−g(x)) are on the graph for all x. The graph of an odd function is
always symmetric to the origin. The graph of g is given below.

graph

This function g is not one-to-one because g(0) = g(
√

3) = g(−
√

3).
It can be shown that every function f can be written as the sum of an

even function and an odd function. Let

g(x) =
1

2
(f(x) + f(−x)), h(x) =

1

2
(f(x)− f(−x)).

Then,

g(−x) =
1

2
(f(−x) + f(x)) = g(x)

h(−x) =
1

2
(f(−x)− f(x)) = −h(x).

Furthermore
f(x) = g(x) + h(x).

Example 1.1.8 Express f as the sum of an even function and an odd func-
tion, where,

f(x) = x4 − 2x3 + x2 − 5x+ 7.

We define

g(x) =
1

2
(f(x) + f(−x))

=
1

2
{(x4 − 2x3 + x2 − 5x+ 7) + (x4 + 2x3 + x2 + 5x+ 7)}

= x4 + x2 + 7
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and

h(x) =
1

2
(f(x)− f(−x))

=
1

2
{(x4 − 2x3 + x2 − 5x+ 7)− (x4 + 2x3 + x2 + 5x+ 7)}

= −2x3 − 5x.

Then clearly g(x) is even and h(x) is odd.

g(−x) = (−x)4 + (−x)2 + 7

= x4 + x2 + 7

= g(x)

h(−x) =− 2(−x)3 − 5(−x)

= 2x3 + 5x

= −h(x).

We note that

g(x) + h(x) = (x4 + x2 + 7) + (−2x3 − 5x)

= x4 − 2x3 + x2 − 5x+ 7

= f(x).

It is not always easy to tell whether a function is one-to-one. The graph-
ical test is that if no horizontal line crosses the graph of f more than once,
then f is one-to-one. To show that f is one-to-one mathematically, we need
to show that f(x1) = f(x2) implies x1 = x2.

Example 1.1.9 Show that f(x) = x3 is a one-to-one function.
Suppose that f(x1) = f(x2). Then

0 = x3
1 − x3

2

= (x1 − x2)(x2
1 + x1x2 + x2

2) (By factoring)

If x1 6= x2, then x2
1 + x1x2 + x2

2 = 0 and

x1 =
−x2 ±

√
x2

2 − 4x2
2

2

=
−x2 ±

√
−3x2

2

2
.
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This is only possible if x1 is not a real number. This contradiction proves
that f(x1) 6= f(x2) if x1 6= x2 and, hence, f is one-to-one. The graph of f is
given below.

graph

If a function f with domain Df and range Rf is one-to-one, then f has a
unique inverse function g with domain Rf and range Df such that for each
x in Df ,

g(f(x)) = x

and for such y in Rf ,
f(g(y)) = y.

This function g is also written as f−1. It is not always easy to express g
explicitly but the following algorithm helps in computing g.

Step 1 Solve the equation y = f(x) for x in terms of y and make sure that there
exists exactly one solution for x.

Step 2 Write x = g(y), where g(y) is the unique solution obtained in Step 1.

Step 3 If it is desirable to have x represent the independent variable and y
represent the dependent variable, then exchange x and y in Step 2 and
write

y = g(x).

Remark 1 If y = f(x) and y = g(x) = f−1(x) are graphed on the same
coordinate axes, then the graph of y = g(x) is a mirror image of the graph
of y = f(x) through the line y = x.

Example 1.1.10 Determine the inverse of f(x) = x3.
We already know from Example 9 that f is one-to-one and, hence, it has

a unique inverse. We use the above algorithm to compute g = f−1.

Step 1 We solve y = x3 for x and get x = y1/3, which is the unique solution.
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Step 2 Then g(y) = y1/3 and g(x) = x1/3 = f−1(x).

Step 3 We plot y = x3 and y = x1/3 on the same coordinate axis and compare
their graphs.

graph

A polynomial function p of degree n has the general form

p(x) = a0x
n + a1x

n−1 + · · ·+ an−1x+ an, a2 6= 0.

The polynomial functions are some of the simplest functions to compute.
For this reason, in calculus we approximate other functions with polynomial
functions.

A rational function r has the form

r(x) =
p(x)

q(x)

where p(x) and q(x) are polynomial functions. We will assume that p(x) and
q(x) have no common non-constant factors. Then the domain of r(x) is the
set of all real numbers x such that q(x) 6= 0.

Exercises 1.1

1. Define each of the following in your own words.

(a) f is a function with domain Df and range Rf

(b) f is an even function

(c) f is an odd function

(d) The graph of f is symmetric to the y-axis

(e) The graph of f is symmetric to the origin.

(f) The function f is one-to-one and has inverse g.
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2. Determine the domains of the following functions

(a) f(x) =
|x|
x

(b) f(x) =
x2

x3 − 27

(c) f(x) =
√
x2 − 9 (d) f(x) =

x2 − 1

x− 1

3. Sketch the graphs of the following functions and determine whether they
are even, odd or one-to-one. If they are one-to-one, compute their in-
verses and plot their inverses on the same set of axes as the functions.

(a) f(x) = x2 − 1 (b) g(x) = x3 − 1

(c) h(x) =
√

9− x, x ≥ 9 (d) k(x) = x2/3

4. If {(x1, y1), (x2, y2), . . . , (xn+1, yn+1)} is a list of discrete data points in
the plane, then there exists a unique nth degree polynomial that goes
through all of them. Joseph Lagrange found a simple way to express this
polynomial, called the Lagrange polynomial.

For n = 2, P2(x) = y1

(
x− x2

x1 − x2

)
+ y2

(
x− x1

x2 − x1

)

For n = 3, P3(x) = y1
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
+ y2

(x− x1)(x− x3)

(x2 − x1)(x2 − x3)
+

y3
(x− x1)(x− x2)

(x3 − x1)(x3 − x2)

P4(x) =y1
(x− x2)(x− x3)(x− x4)

(x1 − x2)(x1 − x3)(x1 − x4)
+ y2

(x− x1)(x− x3)(x− x4)

(x2 − x1)(x2 − x3)(x2 − x4)
+

y3
(x− x1)(x− x2)(x− x4)

(x3 − x1)(x3 − x2)(x3 − x4)
+ y4

(x− x1)(x− x2)(x− x3)

(x4 − x1)(x4 − x2)(x4 − x3)

Consider the data {(−2, 1), (−1,−2), (0, 0), (1, 1), (2, 3)}. Compute P2(x),
P3(x), and P4(x); plot them and determine which data points they go
through. What can you say about Pn(x)?
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5. A linear function has the form y = mx + b. The number m is called
the slope and the number b is called the y-intercept. The graph of this
function goes through the point (0, b) on the y-axis. In each of the
following determine the slope, y-intercept and sketch the graph of the
given linear function:

a) y = 3x− 5 b) y = −2x+ 4 c) y = 4x− 3

d) y = 4 e) 2y + 5x = 10

6. A quadratic function has the form y = ax2 + bx + c, where a 6= 0. On
completing the square, this function can be expressed in the form

y = a

{(
x+

b

2a

)2

− b2 − 4ac

4a2

}
.

The graph of this function is a parabola with vertex

(
− b

2a
, −b

2 − 4ac

4a

)
and line of symmetry axis being the vertical line with equation x =

−b
2a

.

The graph opens upward if a > 0 and downwards if a < 0. In each of
the following quadratic functions, determine the vertex, symmetry axis
and sketch the graph.

a) y = 4x2 − 8 b) y = −4x2 + 16 c) y = x2 + 4x+ 5

d) y = x2 − 6x+ 8 e) y = −x2 + 2x+ 5 f) y = 2x2 − 6x+ 12

g) y = −2x2 − 6x+ 5 h) y = −2x2 + 6x+ 10 i) 3y + 6x2 + 10 = 0

j) y = −x2 + 4x+ 6 k) y = −x2 + 4x l) y = 4x2 − 16x

7. Sketch the graph of the linear function defined by each linear equation
and determine the x-intercept and y-intercept if any.

a) 3x− y = 3 b) 2x− y = 10 c) x = 4− 2y
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d) 4x− 3y = 12 e) 3x+ 4y = 12 f) 4x+ 6y = −12

g) 2x− 3y = 6 h) 2x+ 3y = 12 i) 3x+ 5y = 15

8. Sketch the graph of each of the following functions:

a) y = 4|x| b) y = −4|x|

c) y = 2|x|+ |x− 1| d) y = 3|x|+ 2|x− 2| − 4|x+ 3|

e) y = 2|x+ 2| − 3|x+ 1|

9. Sketch the graph of each of the following piecewise functions.

a) y =

{
2 if x ≥ 0

−2 if x < 0
b) y =

{
x2 for x ≤ 0

2x+ 4 for x > 0

c) y =

{
4x2 if x ≥ 0

3x3 x < 0
d) y =

{
3x2 for x ≤ 1

4 for x > 1

e) y = n− 1 for n− 1 ≤ x < n, for each integer n.

f) y = n for n− 1 < x ≤ n for each integer n.

10. The reflection of the graph of y = f(x) is the graph of y = −f(x). In
each of the following, sketch the graph of f and the graph of its reflection
on the same axis.

a) y = x3 b) y = x2 c) y = |x|

d) y = x3 − 4x e) y = x2 − 2x f) y = |x|+ |x− 1|

g) y = x4 − 4x2 h) y = 3x− 6 i) y =

{
x2 + 1 for x ≤ 0

x3 + 1 if x < 0



12 CHAPTER 1. FUNCTIONS

11. The graph of y = f(x) is said to be

(i) Symmetric with respect to the y-axis if (x, y) and (−x, y) are both
on the graph of f ;

(ii) Symmetric with respect to the origin if (x, y) and (−x,−y) are both
on the graph of f .

For the functions in problems 10 a) – 10 i), determine the functions whose
graphs are (i) Symmetric with respect to y-axis or (ii) Symmetric with
respect to the origin.

12. Discuss the symmetry of the graph of each function and determine whether
the function is even, odd, or neither.

a) f(x) = x6 + 1 b) f(x) = x4 − 3x2 + 4 c) f(x) = x3 − x2

d) f(x) = 2x3 + 3x e) f(x) = (x− 1)3 f) f(x) = (x+ 1)4

g) f(x) =
√
x2 + 4 h) f(x) = 4|x|+ 2 i) f(x) = (x2 + 1)3

j) f(x) =
x2 − 1

x2 + 1
k) f(x) =

√
4− x2 l) f(x) = x1/3

1.2 Trigonometric Functions

The trigonometric functions are defined by the points (x, y) on the unit circle
with the equation x2 + y2 = 1.

graph

Consider the points A(0, 0), B(x, 0), C(x, y) where C(x, y) is a point on
the unit circle. Let θ, read theta, represent the length of the arc joining
the points D(1, 0) and C(x, y). This length is the radian measure of the
angle CAB. Then we define the following six trigonometric functions of θ as
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follows:

sin θ =
y

1
, cos θ =

x

1
, tan θ =

y

x
=

sin θ

cos θ
,

csc θ =
1

y
=

1

sin θ
, sec θ =

1

x
=

1

cos θ
, cot θ =

x

y
=

1

tan θ
.

Since each revolution of the circle has arc length 2π, sin θ and cos θ have
period 2π. That is,

sin(θ + 2nπ) = sin θ and cos(θ + 2nπ) = cos θ, n = 0,±1,±2, . . .

The function values of some of the common arguments are given below:

θ 0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π

sin θ 0 1/2
√

2/2
√

3/2 1
√

3/2
√

2/2 1/2 0

cos θ 1
√

3/2
√

2/2 1/2 0 −1/2 −
√

2/2 −
√

3/2 -1

θ 7π/6 5π/4 4π/3 3π/2 5π/3 7π/4 11π/6 2π

sin θ −1/2 −
√

2/2 −
√

3/2 −1 −
√

3/2 −
√

2/2 −1/2 0

cos θ −
√

3/2 −
√

2/2 −1/2 0 1/2
√

2/2
√

3/2 1

A function f is said to have period p if p is the smallest positive number
such that, for all x,

f(x+ np) = f(x), n = 0,±1,±2, . . . .

Since csc θ is the reciprocal of sin θ and sec θ is the reciprocal of cos(θ), their
periods are also 2π. That is,

csc(θ + 2nπ) = csc(θ) and sec(θ + 2nπ) = sec θ, n = 0,±1,±2, . . . .

It turns out that tan θ and cot θ have period π. That is,

tan(θ + nπ) = tan θ and cot(θ + nπ) = cot θ, n = 0,±1,±2, . . . .

Geometrically, it is easy to see that cos θ and sec θ are the only even trigono-
metric functions. The functions sin θ, cos θ, tan θ and cot θ are all odd func-
tions. The functions sin θ and cos θ are defined for all real numbers. The
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functions csc θ and cot θ are not defined for integer multiples of π, and sec θ
and tan θ are not defined for odd integer multiples of π/2. The graphs of the
six trigonometric functions are sketched as follows:

graph

The dotted vertical lines represent the vertical asymptotes.

There are many useful trigonometric identities and reduction formulas.
For future reference, these are listed here.

sin2 θ + cos2 θ = 1 sin2 θ = 1− cos2 θ cos2 θ = 1− sin2 θ
tan2 θ + 1 = sec2 θ tan2 θ = sec2 θ − 1 sec2 θ − tan2 θ = 1
1 + cot2 θ = csc2 θ cot2 θ = csc2 θ − 1 csc2 θ − cot2 θ = 1

sin 2θ = 2 sin θ cos θ cos 2θ = 2 cos2 θ − 1 cos 2θ = 1 + 2 sin2 θ

sin(x+ y) = sinx cos y + cosx sin y, cos(x+ y) = cosx cos y − sinx sin y
sin(x− y) = sinx cos y − cosx sin y, cos(x− y) = cosx cos y + sinx sin y

tan(x+ y) =
tanx+ tan y

1− tanx tan y
tan(x− y) =

tanx− tan y

1 + tanx tan y

sinα + sin β = 2 sin

(
α + β

2

)
cos

(
α− β

2

)

sinα− sinβ = 2 cos

(
α + β

2

)
sin

(
α− β

2

)

cosα + cosβ = 2 cos

(
α + β

2

)
cos

(
α− β

2

)

cosα− cos β = −2 sin

(
α + β

2

)
sin

(
α− β

2

)
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sinx cos y =
1

2
(sin(x+ y) + sin(x− y))

cosx sin y =
1

2
(sin(x+ y)− sin(x− y))

cosx cos y =
1

2
(cos(x− y) + cos(x+ y))

sinx sin y =
1

2
(cos(x− y)− cos(x+ y))

sin(π ± θ) = ∓ sin θ

cos(π ± θ) = − cos θ

tan(π ± θ) = ± tan θ

cot(π ± θ) = ± cot θ

sec(π ± θ) = − sec θ

csc(π ± θ) = ∓ csc θ

In applications of calculus to engineering problems, the graphs of y =
A sin(bx+ c) and y = A cos(bx+ c) play a significant role. The first problem
has to do with converting expressions of the form A sin bx + B cos bx to one
of the above forms. Let us begin first with an example.

Example 1.2.1 Express y = 3 sin(2x)−4 cos(2x) in the form y = A sin(2x±
θ) or y = A cos(2x± θ).

First of all, we make a right triangle with sides of length 3 and 4 and
compute the length of the hypotenuse, which is 5. We label one of the acute
angles as θ and compute sin θ, cos θ and tan θ. In our case,

sin θ =
3

5
, cos θ =

4

5
, and, tan θ =

3

4
.

graph
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Then,

y = 3 sin 2x− 4 cos 2x

= 5

[
(sin(2x))

(
3

5

)
− (cos(2x))

4

5

]
= 5[sin(2x) sin θ − cos(2x) cos θ]

= −5[cos(2x) cos θ − sin(2x) sin θ]

= −5[cos(2x+ θ)]

Thus, the problem is reduced to sketching a cosine function, ???

y = −5 cos(2x+ θ).

We can compute the radian measure of θ from any of the equations

sin θ =
3

5
, cos θ =

4

5
or tan θ =

3

4
.

Example 1.2.2 Sketch the graph of y = 5 cos(2x+ 1).
In order to sketch the graph, we first compute all of the zeros, relative

maxima, and relative minima. We can see that the maximum values will be
5 and minimum values are −5. For this reason the number 5 is called the
amplitude of the graph. We know that the cosine function has zeros at odd
integer multiples of π/2. Let

2xn + 1 = (2n+ 1)
π

2
, xn = (2n+ 1)

π

4
− 1

2
, n = 0,±1,±2 . . . .

The max and min values of a cosine function occur halfway between the
consecutive zeros. With this information, we are able to sketch the graph of

the given function. The period is π, phase shift is
1

2
and frequency is

1

π
.

graph

For the functions of the form y = A sin(ωt± d) or y = A cos(ωt± d) we
make the following definitions:
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period =
2π

ω
, frequency =

1

period
=

ω

2π
,

amplitude = |A|, and phase shift =
d

ω
.

The motion of a particle that follows the curves A sin(ωt±d) or A cos(ωt±d)
is called simple harmonic motion.

Exercises 1.2

1. Determine the amplitude, frequency, period and phase shift for each of
the following functions. Sketch their graphs.

(a) y = 2 sin(3t− 2) (b) y = −2 cos(2t− 1)
(c) y = 3 sin 2t+ 4 cos 2t (d) y = 4 sin 2t− 3 cos 2t

(e) y =
sinx

x

2. Sketch the graphs of each of the following:

(a) y = tan(3x) (b) y = cot(5x) (c) y = x sinx
(d) y = sin(1/x) (e) y = x sin(1/x)

3. Express the following products as the sum or difference of functions.

(a) sin(3x) cos(5x) (b) cos(2x) cos(4x) (c) cos(2x) sin(4x)
(d) sin(3x) sin(5x) (e) sin(4x) cos(4x)

4. Express each of the following as a product of functions:

(a) sin(x+ h)− sinx (b) cos(x+ h)− cosx (c) sin(5x)− sin(3x)
(d) cos(4x)− cos(2x) (e) sin(4x) + sin(2x) (f) cos(5x) + cos(3x)

5. Consider the graph of y = sinx,
−π
2
≤ x ≤ π

2
. Take the sample points

{(
−π

2
,−1

)
,
(
−π

6
, −π

2

)
, (0, 0),

(
π

6
,

1

2

)
,
(π

2
, 1
)}

.
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Compute the fourth degree Lagrange Polynomial that approximates and
agrees with y = sinx at these data points. This polynomial has the form

P5(x) = y1
(x− x2)(x− x3)(x− x4)(x− x5)

(x1 − x2)(x1 − x3)(x1 − x4)(x1 − x5)
+

y2
(x− x1)(x− x3)(x− x4)(x− x5)

(x2 − x1)(x2 − x3)(x2 − x4)(x2 − x5)
+ · · ·

+ y5
(x− x1)(x− x2)(x− x3)(x− x4)

(x5 − x1)(x5 − x2)(x5 − x3)(x5 − x4)
.

6. Sketch the graphs of the following functions and compute the amplitude,
period, frequency and phase shift, as applicable.

a) y = 3 sin t b) y = 4 cos t c) y = 2 sin(3t)

d) y = −4 cos(2t) e) y = −3 sin(4t) f) y = 2 sin
(
t+ π

6

)
g) y = −2 sin

(
t− π

6

)
h) y = 3 cos(2t+ π) i) y = −3 cos(2t− π)

j) y = 2 sin(4t+ π) k) y = −2 cos(6t− π) l) y = 3 sin(6t+ π)

7. Sketch the graphs of the following functions over two periods.

a) y = 2 secx b) y = −3 tanx c) y = 2 cotx

d) y = 3 cscx e) y = tan(πx) f) y = tan
(
2x+ π

3

)
g) y = 2 cot

(
3x+ π

2

)
h) y = 3 sec

(
2x+ π

3

)
i) y = 2 sin

(
πx+ π

6

)
8. Prove each of the following identities:

a) cos 3t = 3 cos t+ 4 cos3 t b) sin(3t) = 3 sinx− 4 sin3 x

c) sin4 t− cos4 t = − cos 2t d)
sin3 t− cos3 t

sin t− cos t
= 1 + sin 2t

e) cos 4t cos 7t− sin 7t sin 4t = cos 11t f)
sin(x+ y)

sin(x− y)
=

tanx+ tan y

tanx− tan y
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9. If f(x) = cosx, prove that

f(x+ h)− f(x)

h
= cosx

(
cosh− 1

h

)
− sinx

(
sinh

h

)
.

10. If f(x) = sinx, prove that

f(x+ h)− f(x)

h
= sinx

(
cosh− 1

h

)
+ cosx

(
sinh

h

)
.

11. If f(x) = cosx, prove that

f(x)− f(t)

x− t
= cos t

(
cos(x− t)− 1

x− t

)
− sin t

(
sin(x− t)
x− t

)
.

12. If f(x) = sinx, prove that

f(x)− f(t)

x− t
= sin t

(
cos(x− t)− 1

x− t

)
+ cos t

(
sin(x− t)
x− t

)
.

13. Prove that

cos(2t) =
1− tan2 t

1 + tan2 t
.

14. Prove that if y = tan
(x

2

)
, then

(a) cosx =
1− u2

1 + u2
(b) sinx =

2u

1 + u2

1.3 Inverse Trigonometric Functions

None of the trigonometric functions are one-to-one since they are periodic.
In order to define inverses, it is customary to restrict the domains in which
the functions are one-to-one as follows.
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1. y = sinx, −π
2
≤ x ≤ π

2
, is one-to-one and covers the range −1 ≤ y ≤ 1.

Its inverse function is denoted arcsinx, and we define y = arcsinx, −1 ≤
x ≤ 1, if and only if, x = sin y, −π

2
≤ y ≤ π

2
.

graph

2. y = cosx, 0 ≤ x ≤ π, is one-to-one and covers the range −1 ≤ y ≤ 1. Its
inverse function is denoted arccosx, and we define y = arccosx, −1 ≤
x ≤ 1, if and only if, x = cos y, 0 ≤ y ≤ π.

graph

3. y = tanx,
−π
2

< x <
π

2
, is one-to-one and covers the range −∞ <

y < ∞ Its inverse function is denoted arctanx, and we define y =

arctanx, −∞ < x <∞, if and only if, x = tan y,
−π
2

< y <
π

2
.

graph

4. y = cotx, 0, x < π, is one-to-one and covers the range −∞ < y <∞. Its
inverse function is denoted arccot x, and we define y = arccotx, −∞ <
x <∞, if and only if x = cot y, 0 < y < π.

graph
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5. y = secx, 0 ≤ x ≤ π

2
or

π

2
< x ≤ π is one-to-one and covers the range

−∞ < y ≤ −1 or 1 ≤ y < ∞. Its inverse function is denoted arcsec x,
and we define y = arcsec x, −∞ < x ≤ −1 or 1 ≤ x < ∞, if and only

if, x = sec y, 0 ≤ y <
π

2
or

π

2
< y ≤ π.

graph

6. y = cscx,
−π
2
≤ x < 0 or 0 < x ≤ π

2
, is one-to-one and covers the

range −∞ < y ≤ −1 or 1 ≤ y < ∞. Its inverse is denoted arccscx and
we define y = arccscx, −∞ < x ≤ −1 or 1 ≤ x < ∞, if and only if,

x = csc y,
−π
2
≤ y < 0 or 0 < y ≤ π

2
.

Example 1.3.1 Show that each of the following equations is valid.

(a) arcsinx+ arccosx =
π

2

(b) arctanx+ arccotx =
π

2

(c) arcsecx+ arccscx =
π

2

To verify equation (a), we let arcsinx = θ.

graph

Then x = sin θ and cos
(π

2
− θ
)

= x, as shown in the triangle. It follows

that

π

2
− θ = arccosx,

π

2
= θ + arccosx = arcsinx+ arccosx.

The equations in parts (b) and (c) are verified in a similar way.
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Example 1.3.2 If θ = arcsinx, then compute cos θ, tan θ, cot θ, sec θ and
csc θ.

If θ is −π
2
, 0, or

π

2
, then computations are easy.

graph

Suppose that −π
2
< x < 0 or 0 < x <

π

2
. Then, from the triangle, we get

cos θ =
√

1− x2, tan θ =
x√

1− x2
, cot θ =

√
1− x2

x
,

sec θ =
1√

1− x2
and csc θ =

1

x
.

Example 1.3.3 Make the given substitutions to simplify the given radical
expression and compute all trigonometric functions of θ.

(a)
√

4− x2, x = 2 sin θ (b)
√
x2 − 9, x = 3 sec θ

(c) (4 + x2)3/2, x = 2 tan θ

(a) For part (a), sin θ =
x

2
and we use the given triangle:

graph

Then

cos θ =

√
4− x2

2
, tan θ =

x√
4− x2

, cot θ =

√
4− x2

x
,

sec θ =
2√

4− x2
, csc θ =

2

x
.

Furthermore,
√

4− x2 = 2 cos θ and the radical sign is eliminated.
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(b) For part (b), sec θ =
x

3
and we use the given triangle:

graph

Then,

sin θ =

√
x2 − 4

x
, cos θ =

3

x
, tan θ =

√
x2 − 4

3

cot θ =
3√

x2 − 9
, csc θ =

x√
x2 − 9

.

Furthermore,
√
x2 − 9 = 3 tan θ and the radical sign is eliminated.

(c) For part (c), tan θ =
x

2
and we use the given triangle:

graph

Then,

sin θ =
x√
x2 + 4

, cos θ =
2√

x2 + 4
, cot θ =

2

x
,

sec θ =

√
x2 + 4

2
, csc θ =

√
x2 + 4

x
.

Furthermore,
√
x2 + 4 = 2 sec θ and hence

(4 + x)3/2 = (2 sec θ)3 = 8 sec3 θ.
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Remark 2 The three substitutions given in Example 15 are very useful in
calculus. In general, we use the following substitutions for the given radicals:

(a)
√
a2 − x2, x = a sin θ (b)

√
x2 − a2, x = a sec θ

(c)
√
a2 + x2, x = a tan θ.

Exercises 1.3

1. Evaluate each of the following:

(a) 3 arcsin

(
1

2

)
+ 2 arccos

(√
3

2

)

(b) 4 arctan

(
1√
3

)
+ 5arccot

(
1√
3

)
(c) 2arcsec (−2) + 3 arccos

(
− 2√

3

)
(d) cos(2 arccos(x))

(e) sin(2 arccos(x))

2. Simplify each of the following expressions by eliminating the radical by
using an appropriate trigonometric substitution.

(a)
x√

9− x2
(b)

3 + x√
16 + x2

(c)
x− 2

x
√
x2 − 25

(d)
1 + x√

x2 + 2x+ 2
(e)

2− 2x√
x2 − 2x− 3

(Hint: In parts (d) and (e), complete squares first.)

3. Some famous polynomials are the so-called Chebyshev polynomials, de-
fined by

Tn(x) = cos(n arccosx), −1 ≤ x ≤ 1, n = 0, 1, 2, . . . .
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(a) Prove the recurrence relation for Chebyshev polynomials:

Tn+1(x) = 2xTn(x)− Tn−1(x) for each n ≥ 1.

(b) Show that T0(x) = 1, T1(x) = x and generate T2(x), T3(x), T4(x) and
T5(x) using the recurrence relation in part (a).

(c) Determine the zeros of Tn(x) and determine where Tn(x) has its
absolute maximum or minimum values, n = 1, 2, 3, 4, ?.

(Hint: Let θ = arccosx, x = cos θ. Then Tn(x) = cos(nθ), Tn+1(x) =
cos(nθ + θ), Tn−1(x) = cos(nθ − θ). Use the expansion formulas and
then make substitutions in part (a)).

4. Show that for all integers m and n,

Tn(x)Tm(x) =
1

2
[Tm+n(x) + T|m−n|(x)]

(Hint: use the expansion formulas as in problem 3.)

5. Find the exact value of y in each of the following

a) y = arccos
(
−1

2

)
b) y = arcsin

(√
3

2

)
c) y = arctan(−

√
3)

d) y = arccot
(
−
√

3
3

)
e) y = arcsec (−

√
2) f) y = arccsc (−

√
2)

g) y = arcsec
(
− 2√

3

)
h) y = arccsc

(
− 2√

3

)
i) y = arcsec (−2)

j) y = arccsc (−2) k) y = arctan
(
−1√

3

)
l) y = arccot (−

√
3)

6. Solve the following equations for x in radians (all possible answers).

a) 2 sin4 x = sin2 x b) 2 cos2 x− cosx− 1 = 0

c) sin2 x+ 2 sinx+ 1 = 0 d) 4 sin2 x+ 4 sinx+ 1 = 0
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e) 2 sin2 x+ 5 sinx+ 2 = 0 f) cot3 x− 3 cotx = 0

g) sin 2x = cosx h) cos 2x = cosx

i) cos2
(x

2

)
= cosx j) tanx+ cotx = 1

7. If arctan t = x, compute sinx, cosx, tanx, cotx, sec x and cscx in
terms of t.

8. If arcsin t = x, compute sinx, cosx, tanx, cotx, sec x and cscx in terms
of t.

9. If arcsec t = x, compute sinx, cosx, tanx, cotx, sec x and cscx in
terms of t.

10. If arccos t = x, compute sinx, cosx, tanx, cotx, sec x and cscx in
terms of t.

Remark 3 Chebyshev polynomials are used extensively in approximating
functions due to their properties that minimize errors. These polynomials
are called equal ripple polynomials, since their maxima and minima alternate
between 1 and −1.

1.4 Logarithmic, Exponential and Hyperbolic

Functions

Most logarithmic tables have tables for log10 x, loge x, e
x and e−x because

of their universal applications to scientific problems. The key relationship
between logarithmic functions and exponential functions, using the same
base, is that each one is an inverse of the other. For example, for base 10,
we have

N = 10x if and only if x = log10 N.

We get two very interesting relations, namely

x = log10(10x) and N = 10(log10 N).



1.4. LOGARITHMIC, EXPONENTIAL AND HYPERBOLIC FUNCTIONS27

For base e, we get
x = loge(e

x) and y = e(loge y).

If b > 0 and b 6= 1, then b is an admissible base for a logarithm. For such an
admissible base b, we get

x = logb(b
x) and y = b(logb y).

The Logarithmic function with base b, b > 0, b 6= 1, satisfies the following
important properties:

1. logb(b) = 1, logb(1) = 0, and logb(b
x) = x for all real x.

2. logb(xy) = logb x+ logb y, x > 0, y > 0.

3. logb(x/y) = logb x− logb y, x > 0, y > 0.

4. logb(x
y) = y logb x, x > 0, x 6= 1, for all real y.

5. (logb x)(loga b) = loga xb > 0, a > 0, b 6= 1, a 6= 1. Note that logb x =
loga x

loga b
.

This last equation (5) allows us to compute logarithms with respect to
any base b in terms of logarithms in a given base a.

The corresponding laws of exponents with respect to an admissible base
b, b > 0, b 6= 1 are as follows:

1. b0 = 1, b1 = b, and b(logb x) = x for x > 0.

2. bx × by = bx+y

3.
bx

by
= bx−y

4. (bx)y = b(xy)

Notation: If b = e, then we will express

logb(x) as ln(x) or log(x).

The notation exp(x) = ex can be used when confusion may arise.
The graph of y = log x and y = ex are reflections of each other through

the line y = x.
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graph

In applications of calculus to science and engineering, the following six
functions, called hyperbolic functions, are very useful.

1. sinh(x) =
1

2
(ex − e−x) for all real x, read as hyperbolic sine of x.

2. cosh(x) =
1

2
(ex + e−x), for all real x, read as hyperbolic cosine of x.

3. tanh(x) =
sinh(x)

cosh(x)
=
ex − e−x

ex + e−x
, for all real x, read as hyperbolic tangent

of x.

4. coth(x) =
cosh(x)

sinh(x)
=
ex + e−x

ex − e−x
, x 6= 0, read as hyperbolic cotangent of x.

5. sech (x) =
1

coshx
=

2

ex + e−x
, for all real x, read as hyperbolic secant of

x.

6. csch (x) =
1

sinh(x)
=

2

ex − e−x
, x 6= 0, read as hyperbolic cosecant of x.

The graphs of these functions are sketched as follows:

graph

Example 1.4.1 Eliminate quotients and exponents in the following equa-
tion by taking the natural logarithm of both sides.

y =
(x+ 1)3(2x− 3)3/4

(1 + 7x)1/3(2x+ 3)3/2
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ln(y) = ln

[
(x+ 1)3(2x− 3)3/4

(1 + 7x)1/3(2x+ 3)3/2]

]
= ln[(x+ 1)3(2x− 3)3/4]− ln[(1 + 7x)1/3(2x+ 3)3/2]

= ln(x+ 1)3 + ln(2x− 3)3/4 − {ln(1 + 7x)1/3 + ln(2x+ 3)3/2}

= 3 ln(x+ 1) +
3

4
ln(2x− 3)− 1

3
ln(1 + 7x)− 3

2
ln(2x+ 3)

Example 1.4.2 Solve the following equation for x:

log3(x4) + log3 x
3 − 2 log3 x

1/2 = 5.

Using logarithm properties, we get

4 log3 x+ 3 log3 x− log3 x = 5

6 log3 x = 5

log3 x =
5

6
x = (3)5/6.

Example 1.4.3 Solve the following equation for x:

ex

1 + ex
=

1

3
.

On multiplying through, we get

3ex = 1 + ex or 2ex = 1, ex =
1

2
x = ln(1/2) = − ln(2).

Example 1.4.4 Prove that for all real x, cosh2x− sinh2 x = 1.

cosh2 x− sinh2 x =

[
1

2
(ex + e−x)

]2

−
[

1

2
(ex − e−x)

]2

=
1

4
[e2x + 2 + e−2x)− (e2x − 2 + e−2x)]

=
1

4
[4]

= 1
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Example 1.4.5 Prove that

(a) sinh(x+ y) = sinhx cosh y + coshx sinh y.

(b) sinh 2x = 2 sinhx cosh y.

Equation (b) follows from equation (a) by letting x = y. So, we work
with equation (a).

(a) sinhx cosh y + coshx sinh y =
1

2
(ex − e−x) · 1

2
(ey + e−y)

+
1

2
(ex + e−x) · 1

2
(ey − e−y)

=
1

4
[(ex+y + ex−y − e−x+y − e−x−y)

+ (ex+y − ex−y + e−x+y − e−x−y)]

=
1

4
[2(ex+y − e−(x+y)]

=
1

2
(e(x+y) − e−(x+y))

= sinh(x+ y).

Example 1.4.6 Find the inverses of the following functions:

(a) sinhx (b) coshx (c) tanhx

(a) Let y = sinhx =
1

2
(ex − e−x). Then

2exy = 2ex
(

1

2
(ex − e−x)

)
= e2x − 1

e2x − 2yex − 1 = 0

(ex)2 − (2y)ex − 1 = 0

ex =
2y ±

√
4y2 + 4

2
= y ±

√
y2 + 1

Since ex > 0 for all x, ex = y +
√

1 + y2.
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On taking natural logarithms of both sides, we get

x = ln(y +
√

1 + y2).

The inverse function of sinhx, denoted arcsinh x, is defined by

arcsinhx = ln(x+
√

1 + x2)

(b) As in part (a), we let y = coshx and

2exy = 2ex · 1

2
(ex + e−x) = e2x + 1

e2x − (2y)ex + 1 = 0

ex =
2y ±

√
4y2 − 4

2

ex = y ±
√
y2 − 1.

We observe that coshx is an even function and hence it is not one-to-
one. Since cosh(−x) = cosh(x), we will solve for the larger x. On taking
natural logarithms of both sides, we get

x1 = ln(y +
√
y2 − 1) or x2 = ln(y −

√
y2 − 1).

We observe that

x2 = ln(y −
√
y2 − 1) = ln

[
(y −

√
y2 − 1)(y +

√
y2 − 1)

y +
√
y2 − 1

]

= ln

(
1

y +
√
y2 − 1

)
= − ln(y +

√
y2 − 1) = −x1.

Thus, we can define, as the principal branch,

arccoshx = ln(x+
√
x2 − 1), x ≥ 1
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(c) We begin with y = tanhx and clear denominators to get

y =
ex − e−x

ex + e−x
, |y| < 1

ex[(ex + e−x)y] = ex[(ex − e−x)] , |y| < 1

(e2x + 1)y = e2x − 1 , |y| < 1

e2x(y − 1) = −(1 + y) , |y| < 1

e2x = −(1 + y)

y − 1
, |y| < 1

e2x =
1 + y

1− y
, |y| < 1

2x = ln

(
1 + y

1− y

)
, |y| < 1

x =
1

2
ln

(
1 + y

1− y

)
, |y| < 1.

Therefore, the inverse of the function tanhx, denoted arctanhx, is defined
by

arctanh , x =
1

2
ln

(
1 + x

1− x

)
, |x| < 1.

Exercises 1.4

1. Evaluate each of the following

(a) log10(0.001) (b) log2(1/64) (c) ln(e0.001)

(d) log10

(
(100)1/3(0.01)2

(.0001)2/3

)0.1

(e) eln(e−2)

2. Prove each of the following identities

(a) sinh(x− y) = sinhx cosh y − coshx sinh y

(b) cosh(x+ y) = coshx cosh y + sinhx sinh y
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(c) cosh(x− y) = coshx cosh y − sinhx sinh y

(d) cosh 2x = cosh2 x+ sinh2 x = 2 cosh2 x− 1 = 1 + 2 sinh2 x

3. Simplify the radical expression by using the given substitution.

(a)
√
a2 + x2, x = a sinh t (b)

√
x2 − a2, x = a cosh t

(c)
√
a2 − x2, x = a tanh t

4. Find the inverses of the following functions:

(a) cothx (b) sech x (c) csch x

5. If coshx =
3

2
, find sinhx and tanhx.

6. Prove that sinh(3t) = 3 sinh t+ 4 sinh3 t (Hint: Expand sinh(2t+ t).)

7. Sketch the graph of each of the following functions.

a) y = 10x b) y = 2x c) y = 10−x d) y = 2−x

e) y = ex f) y = e−x
2

g) y = xe−x
2

i) y = e−x

j) y = sinhx k) y = coshx l) y = tanhx m) y = cothx

n) y = sechx o) y = cschx

8. Sketch the graph of each of the following functions.

a) y = log10 x b) y = log2 x c) y = lnx d) y = log3 x

e) y = arcsinhx f) y = arccoshx g) y = arctanhx

9. Compute the given logarithms in terms log10 2 and log10 3.
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a) log10 36 b) log10

(
27

16

)
c) log10

(
20

9

)

d) log10(600) e) log10

(
30

16

)
f) log10

(
610

(20)5

)

10. Solve each of the following equations for the independent variable.

a) lnx− ln(x+ 1) = ln(4) b) 2 log10(x− 3) = log10(x+ 5) + log10 4

c) log10 t
2 = (log10 t)

2 d) e2x − 4ex + 3 = 0

e) ex + 6e−x = 5 f) 2 sinhx+ coshx = 4



Chapter 2

Limits and Continuity

2.1 Intuitive treatment and definitions

2.1.1 Introductory Examples

The concepts of limit and continuity are very closely related. An intuitive
understanding of these concepts can be obtained through the following ex-
amples.

Example 2.1.1 Consider the function f(x) = x2 as x tends to 2.

As x tends to 2 from the right or from the left, f(x) tends to 4. The
value of f at 2 is 4. The graph of f is in one piece and there are no holes or
jumps in the graph. We say that f is continuous at 2 because f(x) tends to
f(2) as x tends to 2.

graph

The statement that f(x) tends to 4 as x tends to 2 from the right is
expressed in symbols as

lim
x→2+

f(x) = 4

and is read, “the limit of f(x), as x goes to 2 from the right, equals 4.”

35
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The statement that f(x) tends to 4 as x tends to 2 from the left is written

lim
x→2−

f(x) = 4

and is read, “the limit of f(x), as x goes to 2 from the left, equals 4.”
The statement that f(x) tends to 4 as x tends to 2 either from the right

or from the left, is written
lim
x→2

f(x) = 4

and is read, “the limit of f(x), as x goes to 2, equals 4.”
The statement that f(x) is continuous at x = 2 is expressed by the

equation
lim
x→2

f(x) = f(2).

Example 2.1.2 Consider the unit step function as x tends to 0.

u(x) =

{
0 if x < 0
1 if x ≥ 0.

graph

The function, u(x) tends to 1 as x tends to 0 from the right side. So, we
write

lim
x→0+

u(x) = 1 = u(0).

The limit of u(x) as x tends to 0 from the left equals 0. Hence,

lim
x→0−

u(x) = 0 6= u(0).

Since
lim
x→0+

u(x) = u(0),

we say that u(x) is continuous at 0 from the right. Since

lim
x→0−

u(x) 6= u(0),
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we say that u(x) is not continuous at 0 from the left. In this case the jump
at 0 is 1 and is defined by

jump (u(x), 0) = lim
x→0+

u(x)− lim
x→0−

u(x)

= 1.

Observe that the graph of u(x) has two pieces that are not joined together.
Every horizontal line with equation y = c, 0 < c < 1, separates the two
pieces of the graph without intersecting the graph of u(x). This kind of
jump discontinuity at a point is called “finite jump” discontinuity.

Example 2.1.3 Consider the signum function, sign(x), defined by

sign (x) =
x

|x|
=

{
1 if x > 0

−1 if x < 0
.

If x > 0, then sign(x) = 1. If x < 0, then sign(x) = −1. In this case,

lim
x→0+

sign(x) = 1

lim
x→0−

sign(x) = −1

jump (sign(x), 0) = 2.

Since sign(x) is not defined at x = 0, it is not continuous at 0.

Example 2.1.4 Consider f(θ) =
sin θ

θ
as θ tends to 0.

graph

The point C(cos θ, sin θ) on the unit circle defines sin θ as the vertical
length BC. The radian measure of the angle θ is the arc length DC. It is
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clear that the vertical length BC and arc length DC get closer to each other
as θ tends to 0 from above. Thus,

graph

lim
θ→0+

sin θ

θ
= 1.

For negative θ, sin θ and θ are both negative.

lim
θ→0+

sin(−θ)
−θ

= lim
θ→0+

− sin θ

−θ
= 1.

Hence,

lim
θ→0

sin θ

θ
= 1.

This limit can be verified by numerical computation for small θ.

Example 2.1.5 Consider f(x) =
1

x
as x tends to 0 and as x tends to ±∞.

graph

It is intuitively clear that

lim
x→0+

1

x
= +∞

lim
x→+∞

1

x
= 0

lim
x→0−

1

x
= −∞

lim
x→−∞

1

x
= 0.
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The function f is not continuous at x = 0 because it is not defined for x = 0.
This discontinuity is not removable because the limits from the left and from
the right, at x = 0, are not equal. The horizontal and vertical axes divide
the graph of f in two separate pieces. The vertical axis is called the vertical
asymptote of the graph of f . The horizontal axis is called the horizontal
asymptote of the graph of f . We say that f has an essential discontinuity at
x = 0.

Example 2.1.6 Consider f(x) = sin(1/x) as x tends to 0.

graph

The period of the sine function is 2π. As observed in Example 5, 1/x
becomes very large as x becomes small. For this reason, many cycles of the
sine wave pass from the value −1 to the value +1 and a rapid oscillation
occurs near zero. None of the following limits exist:

lim
x→0+

sin

(
1

x

)
, lim

x→0−
sin

(
1

x

)
, lim

x→0
sin

(
1

x

)
.

It is not possible to define the function f at 0 to make it continuous. This
kind of discontinuity is called an “oscillation” type of discontinuity.

Example 2.1.7 Consider f(x) = x sin

(
1

x

)
as x tends to 0.

graph

In this example, sin

(
1

x

)
, oscillates as in Example 6, but the amplitude
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|x| tends to zero as x tends to 0. In this case,

lim
x→0+

x sin

(
1

x

)
= 0

lim
x→0−

x sin

(
1

x

)
= 0

lim
x→0

x sin

(
1

x

)
= 0.

The discontinuity at x = 0 is removable. We define f(0) = 0 to make f
continuous at x = 0.

Example 2.1.8 Consider f(x) =
x− 2

x2 − 4
as x tends to ±2.

This is an example of a rational function that yields the indeterminate
form 0/0 when x is replaced by 2. When this kind of situation occurs in
rational functions, it is necessary to cancel the common factors of the nu-
merator and the denominator to determine the appropriate limit if it exists.
In this example, x−2 is the common factor and the reduced form is obtained
through cancellation.

graph

f(x) =
x− 2

x2 − 4
=

x− 2

(x− 2)(x+ 2)

=
1

x+ 2
.

In order to get the limits as x tends to 2, we used the reduced form to get
1/4. The discontinuity at x = 2 is removed if we define f(2) = 1/4. This
function still has the essential discontinuity at x = −2.



2.1. INTUITIVE TREATMENT AND DEFINITIONS 41

Example 2.1.9 Consider f(x) =

√
x−
√

3

x2 − 9
as x tends to 3.

In this case f is not a rational function; still, the problem at x = 3 is
caused by the common factor (

√
x−
√

3).

graph

f(x) =

√
x−
√

3

x2 − 9

=
(
√
x−
√

3)

(x+ 3)(
√
x−
√

3)(
√
x+
√

3)

=
1

(x+ 3)(
√
x+
√

3)
.

As x tends to 3, the reduced form of f tends to 1/(12
√

3). Thus,

lim
x→3+

f(x) = lim
x→3−

f(x) = lim
x→3

f(x) =
1

12
√

3
.

The discontinuity of f at x = 3 is removed by defining f(3) =
1

12
√

3
. The

other discontinuities of f at x = −3 and x = −
√

3 are essential discontinuities
and cannot be removed.

Even though calculus began intuitively, formal and precise definitions of
limit and continuity became necessary. These precise definitions have become
the foundations of calculus and its applications to the sciences. Let us assume
that a function f is defined in some open interval, (a, b), except possibly at
one point c, such that a < c < b. Then we make the following definitions
using the Greek symbols: ε, read “epsilon” and δ, read, “delta.”

2.1.2 Limit: Formal Definitions
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Definition 2.1.1 The limit of f(x) as x goes to c from the right is L, if and
only if, for each ε > 0, there exists some δ > 0 such that

|f(x)− L| < ε, whenever, c < x < c+ δ.

The statement that the limit of f(x) as x goes to c from the right is L, is
expressed by the equation

lim
x→c+

f(x) = L.

graph

Definition 2.1.2 The limit of f(x) as x goes to c from the left is L, if and
only if, for each ε > 0, there exists some δ > 0 such that

|f(x)− L| < ε, whenever, c− δ < x < c.

The statement that the limit of f(x) as x goes to c from the left is L, is
written as

lim
x→c−

f(x) = L.

graph

Definition 2.1.3 The (two-sided) limit of f(x) as x goes to c is L, if and
only if, for each ε > 0, there exists some δ > 0 such that

|f(x)− L| < ε, whenever 0 < |x− c| < δ.

graph
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The equation

lim
x→c

f(x) = L

is read “the (two-sided) limit of f(x) as x goes to c equals L.”

2.1.3 Continuity: Formal Definitions

Definition 2.1.4 The function f is said to be continuous at c from the right
if f(c) is defined, and

lim
x→c+

f(x) = f(c).

Definition 2.1.5 The function f is said to be continuous at c from the left
if f(c) is defined, and

lim
x→c−

f(x) = f(c).

Definition 2.1.6 The function f is said to be (two-sided) continuous at c if
f(c) is defined, and

lim
x→c

f(x) = f(c).

Remark 4 The continuity definition requires that the following conditions
be met if f is to be continuous at c:

(i) f(c) is defined as a finite real number,

(ii) lim
x→c−

f(x) exists and equals f(c),

(iii) lim
x→c+

f(x) exists and equals f(c),

(iv) lim
x→c−

f(x) = f(c) = lim
x→c+

f(x).

When a function f is not continuous at c, one, or more, of these conditions
are not met.
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Remark 5 All polynomials, sinx, cosx, ex, sinhx, coshx, bx, b 6= 1 are con-
tinuous for all real values of x. All logarithmic functions, logb x, b > 0, b 6= 1
are continuous for all x > 0. Each rational function, p(x)/q(x), is continuous
where q(x) 6= 0. Each of the functions tanx, cotx, sec x, csc x, tanhx, cothx,
sech x, and csch x is continuous at each point of its domain.

Definition 2.1.7 (Algebra of functions) Let f and g be two functions that
have a common domain, say D. Then we define the following for all x in D:

1. (f + g)(x) = f(x) + g(x) (sum of f and g)

2. (f − g)(x) = f(x)− g(x) (difference of f and g)

3.

(
f

g

)
(x) =

f(x)

g(x)
, if g(x) 6= 0 (quotient of f and g)

4. (gf)(x) = g(x)f(x) (product of f and g)

If the range of f is a subset of the domain of g, then we define the
composition, g ◦ f , of f followed by g, as follows:

5. (g ◦ f)(x) = g(f(x))

Remark 6 The following theorems on limits and continuity follow from the
definitions of limit and continuity.

Theorem 2.1.1 Suppose that for some real numbers L and M , lim
x→c

f(x) = L

and lim
x→c

g(x) = M . Then

(i) lim
x→c

k = k, where k is a constant function.

(ii) lim
x→c

(f(x) + g(x)) = lim
x→c

f(x) + lim
x→c

g(x)

(iii) lim
x→c

(f(x)− g(x)) = lim
x→c

f(x)− lim
x→c

g(x)
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(iv) lim
x→c

(f(x)g(x)) =
(

lim
x→c

f(x)
)(

lim
x→c

g(x)
)

(v) lim
x→c

(
f(x)

g(x)

)
=

lim
x→c

f(x)

lim
x→c

g(x)
, if lim

x→c
g(x) 6= 0

Proof.
Part (i) Let f(x) = k for all x and ε > 0 be given. Then

|f(x)− k| = |k − k| = 0 < ε

for all x. This completes the proof of Part (i).
For Parts (ii)–(v) let ε > 0 be given and let

lim
x→c

f(x) = L and lim
x→c

g(x) = M.

By definition there exist δ1 > 0 and δ2 > 0 such that

|f(x)− L| < ε

3
whenever 0 < |x− c| < δ1 (1)

|g(x)−M | < ε

3
whenever 0 < |x− c| < δ2 (2)

Part (ii) Let δ = min(δ1, δ2). Then 0 < |x− c| < δ implies that

0 < |x− c| < δ1 and |f(x)− L| < ε

3
(by (1)) (3)

0 < |x− c| < δ2 and |g(x)−M | < ε

3
(by (2)) (4)

Hence, if 0 < |x− c| < δ, then

|(f(x) + g(x))− (L+M)| = |(f(x)− L) + (g(x)−M)|
≤ |f(x)− L|+ |g(x)−M |

<
ε

3
+
ε

3
(by (3) and (4))

< ε.

This completes the proof of Part (ii).
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Part (iii) Let δ be defined as in Part (ii). Then 0 < |x− c| < δ implies that

|(f(x)− g(x))− (L−M)| = |(f(x)− L) + (g(x)−M)|
≤ |f(x)− L|+ |g(x)−M |

<
ε

3
+
ε

3
< ε.

This completes the proof of Part (iii).

Part (iv) Let ε > 0 be given. Let

ε1 = min

(
1,

ε

1 + |L|+ |M |

)
.

Then ε1 > 0 and, by definition, there exist δ1 and δ2 such that

|f(x)− L| < ε1 whenever 0 < |x− c| < δ1 (5)

|g(x)−M | < ε1 whenever 0 < |x− c| < δ2 (6)

Let δ = min(δ1, δ2). Then 0 < |x− c| < δ implies that

0 < |x− c| < δ1 and |f(x)− L| < ε1 (by (5)) (7)

0 < |x− c| < δ2 and |g(x)−M | < ε1 (by (6)) (8)

Also,

|f(x)g(x)− LM | = |(f(x)− L+ L)(g(x)−M +M)− LM |
= |(f(x)− L)(g(x)−M) + (f(x)− L)M + L(g(x)−M)|
≤ |f(x)− L| |g(x)−M |+ |f(x) + L| |M |+ |L| |g(x)−M |
< ε21 + |M |ε1 + |L|ε1
≤ ε1 + |M |ε1 + |L|ε1
= (1 + |M |+ |N |)ε1
≤ ε.

This completes the proof of Part (iv).

Part (v) Suppose that M > 0 and lim
x→c

g(x) = M . Then we show that

lim
x→c

1

g(x)
=

1

M
.
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Since M/2 > 0, there exists some δ1 > 0 such that

|g(x)−M | < M

2
whenever 0 < |x− c| < δ1,

−M
2

+M < g(x) <
3M

2
whenever 0 < |x− c| < δ1,

0 <
M

2
< g(x) <

3M

2
whenever 0 < |x− c| < δ1,

1

|g(x)|
<

2

M
whenever 0 < |x− c| < δ1.

Let ε > 0 be given. Let ε1 = M2ε/2. Then ε1 > 0 and there exists some
δ > 0 such that δ < δ1 and

|g(x)−M | < ε1 whenever 0 < |x− c| < δ < δ1,∣∣∣∣ 1

g(x)
− 1

M

∣∣∣∣ =

∣∣∣∣M − g(x)

g(x)M

∣∣∣∣ =
|g(x)−M |
|g(x)|M

=
1

M
· 1

|g(x)|
|g(x)−M |

<
1

M
· 2

M
· ε1

=
2ε1
M2

= ε whenever 0 < |x− c| < δ.

This completes the proof of the statement

lim
x→c

1

g(x)
=

1

M
whenever M > 0.

The case for M < 0 can be proven in a similar manner. Now, we can use
Part (iv) to prove Part (v) as follows:

lim
x→c

f(x)

g(x)
= lim

x→c

(
f(x) · 1

g(x)

)
= lim

x→c
f(x) · lim

x→c

(
1

g(x)

)
= L · 1

M

=
L

M
.
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This completes the proof of Theorem 2.1.1.

Theorem 2.1.2 If f and g are two functions that are continuous on a com-
mon domain D, then the sum, f + g, the difference, f − g and the product,
fg, are continuous on D. Also, f/g is continuous at each point x in D such
that g(x) 6= 0.

Proof. If f and g are continuous at c, then f(c) and g(c) are real numbers
and

lim
x→c

f(x) = f(c), lim
x→c

g(x) = g(c).

By Theorem 2.1.1, we get

lim
x→c

(f(x) + g(x)) = lim
x→c

f(x) + lim
x→c

g(x) = f(c) + g(c)

lim
x→c

(f(x)− g(x)) = lim
x→c

f(x)− lim
x→c

g(x) = f(c)− g(c)

lim
x→c

(f(x)g(x)) =
(

lim
x→c

f(x)
)

lim
x→c

(g(x)) = f(c)g(c)

lim
x→c

(
f(x)

g(x)

)
=

limx→c f(x)

limx→c g(x)
=
f(c)

g(c)
, if g(c) 6= 0.

This completes the proof of Theorem 2.1.2.

2.1.4 Continuity Examples

Example 2.1.10 Show that the constant function f(x) = 4 is continuous at
every real number c. Show that for every constant k, f(x) = k is continuous
at every real number c.

First of all, if f(x) = 4, then f(c) = 4. We need to show that

lim
x→c

4 = 4.

graph

For each ε > 0, let δ = 1. Then

|f(x)− f(c)| = |4− 4| = 0 < ε
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for all x such that |x− c| < 1. Secondly, for each ε > 0, let δ = 1. Then

|f(x)− f(c)| = |k − k| = 0 < ε

for all x such that |x− c| < 1. This completes the required proof.

Example 2.1.11 Show that f(x) = 3x− 4 is continuous at x = 3.
Let ε > 0 be given. Then

|f(x)− f(3)| = |(3x− 4)− (5)|
= |3x− 9|
= 3|x− 3|
< ε

whenever |x− 3| < ε

3
.

We define δ =
ε

3
. Then, it follows that

lim
x→3

f(x) = f(3)

and, hence, f is continuous at x = 3.

Example 2.1.12 Show that f(x) = x3 is continuous at x = 2.
Since f(2) = 8, we need to prove that

lim
x→2

x3 = 8 = 23.

graph

Let ε > 0 be given. Let us concentrate our attention on the open interval
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(1, 3) that contains x = 2 at its mid-point. Then

|f(x)− f(2)| = |x3 − 8| = |(x− 2)(x2 + 2x+ 4)|
= |x− 2| |x2 + 2x+ 4|
≤ |x− 2|(|x|2 + 2|x|+ 4) (Triangle Inequality |u+ v| ≤ |u|+ |v|)
≤ |x− 2|(9 + 18 + 4)

= 31|x− 2|
< ε

Provided

|x− 2| < ε

31
.

Since we are concentrating on the interval (1, 3) for which |x − 2| < 1, we

need to define δ to be the minimum of 1 and
ε

31
. Thus, if we define δ =

min{1, ε/31}, then

|f(x)− f(2)| < ε

whenever |x− 2| < δ. By definition, f(x) is continuous at x = 2.

Example 2.1.13 Show that every polynomial P (x) is continuous at every
c.

From algebra, we recall that, by the Remainder Theorem,

P (x) = (x− c)Q(x) + P (c).

Thus,

|P (x)− P (c)| = |x− c||Q(x)|

where Q(x) is a polynomial of degree one less than the degree of P (x). As
in Example 12, |Q(x)| is bounded on the closed interval [c − 1, c + 1]. For
example, if

Q(x) = q0x
n−1 + q1x

n−2 + · · ·+ qn−2x+ qn−1

|Q(x)| ≤ |q0| |x|n−1 + |q1| |x|n−2 + · · ·+ |qn−2| |x|+ |qn−1|.
Let m = max{|x| : c− 1 ≤ x ≤ c+ 1}. Then

|Q(x)| ≤ |q0|mn−1 + |q1|mn−2 + · · ·+ qn−2m+ |qn−1| = M,
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for some M . Then

|P (x)− P (c)| = |x− c| |Q(x)| ≤M |x− c| < ε

whenever |x− c| < ε

M
. As in Example 12, we define δ = min

{
1,

ε

M

}
. Then

|P (x)− P (c)| < ε, whenever |x− c| < δ. Hence,

lim
x→c

P (x) = P (c)

and by definition P (x) is continuous at each number c.

Example 2.1.14 Show that f(x) =
1

x
is continuous at every real number

c > 0.
We need to show that

lim
x→c

1

x
=

1

c
.

Let ε > 0 be given. Let us concentrate on the interval |x − c| ≤ c

2
; that is,

c

2
≤ x ≤ 3c

2
. Clearly, x 6= 0 in this interval. Then

|f(x)− f(c)| =
∣∣∣∣1x − 1

c

∣∣∣∣
=

∣∣∣∣c− xcx

∣∣∣∣
= |x− c| · 1

c
· 1

|x|

< |x− c| · 1

c
· 2

c

=
2

c2
|x− c|

< ε

whenever |x− c| < c2ε

2
.

We define δ = min

{
c

2
,
c2ε

2

}
. Then for all x such that |x− c| < δ,∣∣∣∣1x − 1

c

∣∣∣∣ < ε.
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Hence,

lim
x→c

1

x
=

1

c

and the function f(x) =
1

x
is continuous at each c > 0.

A similar argument can be used for c < 0. The function f(x) =
1

x
is

continuous for all x 6= 0.

Example 2.1.15 Suppose that the domain of a function g contains an open
interval containing c, and the range of g contains an open interval containing
g(c). Suppose further that the domain of f contains the range of g. Show
that if g is continuous at c and f is continuous at g(c), then the composition
f ◦ g is continuous at c.

We need to show that

lim
x→c

f(g(x)) = f(g(c)).

Let ε > 0 be given. Since f is continuous at g(c), there exists δ1 > 0 such
that

1. |f(y)− f(g(c))| < ε, whenever, |y − g(c)| < δ1.

Since g is continuous at c, and δ1 > 0, there exists δ > 0 such that

2. |g(x)− g(c)| < δ1, whenever, |x− c| < δ.

On replacing y by g(x) in equation (1), we get

|f(g(x))− f(g(c))| < ε, whenever, |x− c| < δ.

By definition, it follows that

lim
x→c

f(g(x)) = f(g(c))

and the composition f ◦ g is continuous at c.

Example 2.1.16 Suppose that two functions f and g have a common do-
main that contains one open interval containing c. Suppose further that f
and g are continuous at c. Then show that
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(i) f + g is continuous at c,

(ii) f − g is continuous at c,

(iii) kf is continuous at c for every constant k 6= 0,

(iv) f · g is continuous at c.

Part (i) We need to prove that

lim
x→c

[f(x) + g(x)] = f(c) + g(c).

Let ε > 0 be given. Then
ε

2
> 0. Since f is continuous at c and

ε

2
> 0, there

exists some δ1 > 0 such that

(1) |f(x)− f(c)| < ε

2
, whenever, |x− c| ≤ δ1.

Also, since g is continuous at c and
ε

2
> 0, there exists some δ2 > 0 such that

(2) |g(x)− g(c)| < ε

2
, whenever, |x− c| < δ

2
.

Let δ = min{δ1, δ2}. Then δ > 0. Let |x − c| < δ. Then |x − c| < δ1 and
|x− c| < δ2. For this choice of x, we get

|{f(x) + g(x)} − {f(c) + g(c)}|
= |{f(x)− f(c)}+ {g(x)− g(c)}|
≤ |f(x)− f(c)|+ |g(x)− g(c)| (by triangle inequality)

<
ε

2
+
ε

2
= ε.

It follows that

lim
x→0

(f(x) + g(x)) = f(c) + g(c)

and f + g is continuous at c. This proves part (i).
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Part (ii) For Part (ii) we chose ε, ε/2, δ1, δ2 and δ exactly as in Part (i).
Suppose |x− c| < δ. Then |x− c| < δ1 and |x− c| < δ2. For these choices of
x we get

|{f(x)− g(x)} − {f(c)− g(c)}|
= |{f(x)− f(c)} − {g(x)− g(c)}|
≤ |f(x)− f(c)|+ |g(x)− g(c)| (by triangle inequality)

<
ε

2
+
ε

2
= ε.

It follows that

lim
x→c

(f(x)− g(x)) = f(c)− g(c)

and, hence, f − g is continuous at c.

Part (iii) For Part (iii) let ε > 0 be given. Since k 6= 0,
ε

|k|
> 0. Since f is

continuous at c, there exists some δ > 0 such that

|f(x)− f(c)| < ε

|k|
, whenever, |x− c| < δ.

If |x− c| < δ, then

|kf(x)− kf(c)| = |k(f(x)− f(c))|
= |k| |(f(x)− f(c)|

< |k| · ε
|k|

= ε.

It follows that

lim
x→c

kf(x) = kf(c)

and, hence, kf is continuous at c.

Part (iv) We need to show that

lim
x→c

(f(x)g(x)) = f(c)g(c).
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Let ε > 0 be given. Without loss of generality we may assume that ε < 1.

Let ε1 =
ε

2(1 + |f(c)|+ |g(c)|)
. Then ε1 > 0, ε1 < 1 and ε1(1 + |f |+ |g(c)|) =

ε

2
< ε. Since f is continuous at c and ε1 > 0, there exists δ1 > 0 such that

|f(x)− f(c)| < ε1 whenever, |x− c| < δ1.

Also, since g is continuous at c and ε1 > 0, there exists δ2 > 0 such that

|g(x)− g(c)| < ε1 whenever, |x− c| < δ2.

Let δ = min{δ1, δ2} and |x− c| < δ. For these choices of x, we get

|f(x)g(x)− f(c)g(c)|
= |(f(x)− f(c) + f(c))(g(x)− g(c) + g(c))− f(c)g(c)|
= |(f(x)− f(c))(g(x)− g(c)) + (f(x)− f(c))g(c) + f(c)(g(x)− g(c))|
≤ |f(x)− f(c)| |g(x)− g(c)|+ |f(x)− f(c)| |g(c)|+ |f(c)| |g(x)− g(c)|
< ε1 · ε1 + ε1|g(c)|+ ε1|f(c)|
< ε1(1 + |g(c)|+ |f(c)|) , (since ε1 < 1)

< ε.

It follows that
lim
x→c

f(x)g(x) = f(c)g(c)

and, hence, the product f · g is continuous at c.

Example 2.1.17 Show that the quotient f/g is continuous at c if f and g
are continuous at c and g(c) 6= 0.

First of all, let us observe that the function 1/g is a composition of g(x)
and 1/x and hence 1/g is continuous at c by virtue of the arguments in
Examples 14 and 15. By the argument in Example 16, the product f(1/g) =
f/g is continuous at c, as required in Example 17.

Example 2.1.18 Show that a rational function of the form p(x)/q(x) is
continuous for all c such that g(c) 6= 0.
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In Example 13, we showed that each polynomial function is continuous
at every real number c. Therefore, p(x) is continuous at every c and q(x) is
continuous at every c. By virtue of the argument in Example 17, the quotient
p(x)/q(x) is continuous for all c such that q(c) 6= 0.

Example 2.1.19 Suppose that f(x) ≤ g(x) ≤ h(x) for all x in an open
interval containing c and

lim
x→c

f(x) = lim
x→c

h(x) = L.

Then, show that,
lim
x→c

g(x) = L.

Let ε > 0 be given. Then there exist δ1 > 0, δ2 > 0, and δ = min{δ1, δ2}
such that

|f(x)− L| < ε

2
whenever 0 < |x− c| < δ1

|h(x)− L) <
ε

2
whenever 0 < |x− c| < δ2.

If 0 < |x− c| < δ1, then 0 < |x− c| < δ1, 0 < |x− c| < δ2 and, hence,

− ε
2
< f(x)− L < g(x)− L < h(x)− L < ε

2
.

It follows that

|g(x)− L| < ε

2
< ε whenever 0 < |x− c| < δ,

and
lim
x→c

g(x) = L.

Example 2.1.20 Show that f(x) = |x| is continuous at 0.
We need to show that

lim
x→0
|x| = 0.

Let ε > 0 be given. Let δ = ε. Then |x− 0| < ε implies that |x| < ε Hence,

lim
x→0
|x| = 0
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Example 2.1.21 Show that

(i) lim
θ→0

sin θ = 0 (ii) lim
θ→0

cos θ = 1

(iii) lim
θ→0

sin θ

θ
= 1 (iv) lim

θ→0

1− cos θ

θ
= 0

graph

Part (i) By definition, the point C(cos θ, sin θ), where θ is the length of
the arc CD, lies on the unit circle. It is clear that the length BC = sin θ is
less than θ, the arclength of the arc CD, for small positive θ. Hence,

−θ ≤ sin θ ≤ θ

and
lim
θ→0+

sin θ = 0.

For small negative θ, we get

θ ≤ sin θ ≤ −θ

and
lim
θ→0−

sin θ = 0.

Therefore,
lim
θ→0

sin θ = 0.

Part (ii) It is clear that the point B approaches D as θ tends to zero. There-
fore,

lim
θ→0

cos θ = 1.

Part (iii) Consider the inequality

Area of triangle ABC ≤ Area of sector ADC ≤ Area of triangle ADE

1

2
cos θ sin θ ≤ 1

2
θ ≤ 1

2

sin θ

cos θ
.
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Assume that θ is small but positive. Multiply each part of the inequality by
2/ sin θ to get

cos θ ≤ θ

sin θ
≤ 1

cos θ
.

On taking limits and using the squeeze theorem, we get

lim
θ→0+

θ

sin θ
= 1.

By taking reciprocals, we get

lim
θ→0+

sin θ

θ
= 1.

Since
sin(−θ)
−θ

=
sin θ

θ
,

lim
θ−0−

sin θ

θ
= 1.

Therefore,

lim
θ→0

sin θ

θ
= 1.

Part (iv)

lim
θ→0

1− cos θ

θ
= lim

θ→0

(1− cos θ)(1 + cos θ)

θ(1 + cos θ)

= lim
θ→0

1− cos2 θ

θ
· 1

(1 + cos θ)

= lim
θ→0

sin θ

θ
· sin θ

1 + cos θ

= 1 · 0

2
= 0.

Example 2.1.22 Show that

(i) sin θ and cos θ are continuous for all real θ.
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(ii) tan θ and sec θ are continuous for all θ 6= 2nπ ± π

2
, n integer.

(iii) cot θ and csc θ are continuous for all θ 6= nπ, n integer.

Part (i) First, we show that for all real c,

lim
θ→c

sin θ = sin c or equivalently lim
θ→c
| sin θ − sin c| = 0.

We observe that

0 ≤ | sin θ − sin c| =
∣∣∣∣2 cos

θ + c

2
sin

θ − c
2

∣∣∣∣
≤
∣∣∣∣2 sin

(θ − c)
2

∣∣∣∣
= |(θ − c)|

∣∣∣∣∣sin (θ−c)
2

(θ−c)
2

∣∣∣∣∣
Therefore, by squeeze theorem,

0 ≤ lim
θ−c
| sin θ − sin c| ≤ 0 · 1 = 0.

It follows that for all real c, sin θ is continuous at c.
Next, we show that

lim
x→c

cosx = cos c or equivalently lim
x→c
| cosx− cos c| = 0.

We observe that

0 ≤ | cosx− cos c| =
∣∣∣∣−2 sin

x+ c

2
sin

(x− c)
2

∣∣∣∣
≤ |θ − c|

∣∣∣∣∣sin
(
x−c

2

)(
x−c

2

) ∣∣∣∣∣ ;

(∣∣∣∣sin x+ c

2

∣∣∣∣ ≤ 1

)
Therefore,

0 ≤ lim
x→c
| cosx− cos c| ≤ 0 · 1 = 0

and cosx is continuous at c.
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Part (ii) Since for all θ 6= 2nπ ± π
2
, n integer,

tan θ =
sin θ

cos θ
, sec θ =

1

cos θ

it follows that tan θ and sec θ are continuous functions.

Part (iii) Both cot θ and csc θ are continuous as quotients of two continuous
functions where the denominators are not zero for n 6= nπ, n integer.

Exercises 2.1 Evaluate each of the following limits.

1. lim
x→1

x2 − 1

x3 − 1
2. lim

x→0

sin(2x)

x
3. lim

x→0

sin 5x

sin 7x

4. lim
x→2+

1

x2 − 4
5. lim

x→2−

1

x2 − 4
6. lim

x→2

x− 2

x2 − 4

7. lim
x→2+

x− 2

|x− 2|
8. lim

x→2−

x− 2

|x− 2|
9. lim

x→2

x− 2

|x− 2|

10. lim
x→3

x2 − 9

x− 3
11. lim

x→3

x2 − 9

x+ 3
12. lim

x→π
2

tanx

13. lim
x→π

2
+

tanx 14. lim
x→0−

csc x 15. lim
x→0+

csc x

16. lim
x→0+

cotx 17. lim
x→0−

cotx 18. lim
x→π

2
+

sec x

19. lim
x→π

2

sec x 20. lim
x→0

sin 2x+ sin 3x

x
21. lim

x→4−

√
x− 2

x− 4

22. lim
x→4+

√
x− 2

x− 4
23 lim

x→4

√
x− 2

x− 4
24. lim

x→3

x4 − 81

x2 − 9

Sketch the graph of each of the following functions. Determine all the
discontinuities of these functions and classify them as (a) removable type,
(b) finite jump type, (c) essential type, (d) oscillation type, or other types.
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25. f(x) = 2
x− 1

|x− 1|
− x− 2

|x− 2|
26. f(x) =

x

x2 − 9

27. f(x) =

{
2x for x ≤ 0
x2 + 1 for x > 0

28. f(x) =

{
sinx if x ≤ 0
sin
(

2
x

)
if x > 0

29. f(x) =
x− 1

(x− 2)(x− 3)
30. f(x) =

{
|x− 1| if x ≤ 1
|x− 2| if x > 1

Recall the unit step function u(x) =

{
0 if x < 0
1 if x ≥ 0.

Sketch the graph of each of the following functions and determine the left
hand limit and the right hand limit at each point of discontinuity of f and
g.

31. f(x) = 2u(x− 3)− u(x− 4)

32. f(x) = −2u(x− 1) + 4u(x− 5)

33. f(x) = u(x− 1) + 2u(x+ 1)− 3u(x− 2)

34. f(x) = sinx
[
u
(
x+

π

2

)
− u

(
x− π

2

)]
35. g(x) = (tanx)

[
u
(
x+

π

2

)
− u

(
x− π

2

)]
36. f(x) = [u(x)− u(x− π)] cosx

2.2 Linear Function Approximations

One simple application of limits is to approximate a function f(x), in a small
neighborhood of a point c, by a line. The approximating line is called the
tangent line. We begin with a review of the equations of a line.

A vertical line has an equation of the form x = c. A vertical line has no
slope. A horizontal line has an equation of the form y = c. A horizontal
line has slope zero. A line that is neither horizontal nor vertical is called an
oblique line.
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Suppose that an oblique line passes through two points, say (x1, y1) and
(x2, y2). Then the slope of this line is define as

m =
y2 − y1

x2 − x1

=
y1 − y2

x1 − x2

.

If (x, y) is any arbitrary point on the above oblique line, then

m =
y − y1

x− x1

=
y − y2

x− x2

.

By equating the two forms of the slope m we get an equation of the line:

y − y1

x− x1

=
y2 − y1

x2 − x1

or
y − y2

x− x2

=
y2 − y1

x2 − x1

.

On multiplying through, we get the “two point” form of the equation of the
line, namely,

y − y1 =
y2 − y1

x2 − x1

(x− x1) or y − y2 =
y2 − y1

x2 − x1

(x− x2).

Example 2.2.1 Find the equations of the lines passing through the follow-
ing pairs of points:

(i) (4, 2) and (6, 2) (ii) (1, 3) and (1, 5)
(iii) (3, 4) and (5,−2) (iv) (0, 2) and (4, 0).

Part (i) Since the y-coordinates of both points are the same, the line is
horizontal and has the equation y = 2. This line has slope 0.

Part (ii) Since the x-coordinates of both points are equal, the line is vertical
and has the equation x = 1.

Part (iii) The slope of the line is given by

m =
−2− 4

5− 3
= −3.

The equation of this line is

y − 4 = −3(x− 3) or y + 2 = −3(x− 5).
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On solving for y, we get the equation of the line as

y = −3x+ 13.

This line goes through the point (0, 13). The number 13 is called the y-
intercept. The above equation is called the slope-intercept form of the line.

Example 2.2.2 Determine the equations of the lines satisfying the given
conditions:

(i) slope = 3, passes through (2, 4)

(ii) slope = −2, passes through (1,−3)

(iii) slope = m, passes through (x1, y1)

(iv) passes through (3, 0) and (0, 4)

(v) passes through (a, 0) and (0, b)

Part (i) If (x, y) is on the line, then we equate the slopes and simplify:

3 =
y − 4

x− 2
or y − 4 = 3(x− 2).

Part (ii) If (x, y) is on the line, then we equate slopes and simplify:

−2 =
y + 3

x− 1
or y + 3 = −2(x− 1).

Part (iii) On equating slopes and clearing fractions, we get

m =
y − y1

x− x1

or y − y1 = m(x− x1).

This form of the line is called the “point-slope” form of the line.
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Part (iv) Using the two forms of the line we get

y − 0

x− 3
=

4− 0

0− 3
or y = −4

3
(x− 3).

If we divide by 4 we get
x

3
+
y

4
= 1.

The number 3 is called the x-intercept and the number 4 is called the y-
intercept of the line. This form of the equation is called the “two-intercept”
form of the line.

Part (v) As in Part (iv), the “two-intercept” form of the line has the equation

x

a
+
y

b
= 1.

In order to approximate a function f at the point c, we first define the slope
m of the line that is tangent to the graph of f at the point (c, f(c)).

graph

m = lim
x→c

f(x)− f(c)

x− c
.

Then the equation of the tangent line is

y − f(c) = m(x− c),

written in the point-slope form. The point (c, f(c)) is called the point of
tangency. This tangent line is called the linear approximation of f about
x = c.

Example 2.2.3 Find the equation of the line tangent to the graph of f(x) =
x2 at the point (2, 4).
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The slope m of the tangent line at (3, 9) is

m = lim
x→3

x2 − 9

x− 3

= lim
x→3

(x+ 3)

= 6.

The equation of the tangent line at (3, 9) is

y − 9 = 6(x− 3).

Example 2.2.4 Obtain the equation of the line tangent to the graph of
f(x) =

√
x at the point (9, 3).

The slope m of the tangent line is given by

m = lim
x→9

√
x− 3

x− 9

= lim
x→9

(
√
x− 3)(

√
x+ 3)

(x− 9)(
√
x+ 3)

= lim
x→9

x− 9

(x− 9)(
√
x+ 3)

= lim
x→9

1√
x+ 3

=
1

6
.

The equation of the tangent line is

y − 3 =
1

6
(x− 9).

Example 2.2.5 Derive the equation of the line tangent to the graph of

f(x) = sinx at

(
π

6
,
1

2

)
.

The slope m of the tangent line is given by
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m = lim
x→π

6

sinx− sin
(
π
6

)
x− π

6

= lim
x→π

6

2 cos
(
x+π/6

2

)
sin
(
x−π/6

2

)
(x− π/6)

= cos(π/6) · lim
x→π

6

sin
(
x−π/6

2

)
(
x−π/6

2

)
= cos(π/6)

=

√
3

2
.

The equation of the tangent line is

y − 1

2
=

√
3

2

(
x− π

6

)
.

Example 2.2.6 Derive the formulas for the slope and the equation of the
line tangent to the graph of f(x) = sinx at (c, sin c).

As in Example 27, replacing π/6 by c, we get

m = lim
x→c

sinx− sin c

x− c

= lim
x→c

2 cos
(
x+c

2

)
sin
(
x−c

2

)
x− c

= lim
x→c

cos

(
x+ c

2

)
· lim
x→c

sin
(
x−c

2

)(
x−c

2

)
= cos c.

Therefore the slope of the line tangent to the graph of f(x) = sinx at (c, sin c)
is cos c.

The equation of the tangent line is

y − sin c = (cos c)(x− c).
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Example 2.2.7 Derive the formulas for the slope, m, and the equation of
the line tangent to the graph of f(x) = cosx at (c, cos c). Then determine

the slope and the equation of the tangent line at

(
π

3
,
1

2

)
.

As in Example 28, we replace the sine function with the cosine function,

m = lim
x→c

cosx− cos c

x− c

= lim
x→c

−2 sin
(
x+c

2

)
sin
(
x−c

2

)
x− c

= lim
x→c

sin

(
x+ c

2

)
lim
x→c

sin
(
x−c

2

)(
x−c

2

)
= − sin(c).

The equation of the tangent line is

y − cos c = − sin c(x− c).

For c =
π

3
, slope = − sin

(π
3

)
= −
√

3

2
and the equation of the tangent line

y − 1

2
= −
√

3

2

(
x− π

3

)
.

Example 2.2.8 Derive the formulas for the slope, m, and the equation of
the line tangent to the graph of f(x) = xn at the point (c, cn), where n is a
natural number. Then get the slope and the equation of the tangent line for
c = 2, n = 4.

By definition, the slope m is given by

m = lim
x→c

xn − cn

x− c
.

To compute this limit for the general natural number n, it is convenient to
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let x = c+ h. Then

m = lim
h→0

(c+ h)n − cn

h

= lim
h→0

1

h

[(
cn + ncn−1h+

n(n− 1)

2!
cn−2h2 + · · ·+ hn

)
− cn

]
= lim

h→0

1

h

[
ncn−1h+

n(n− 1)

2!
cn−2h2 + · · ·+ hn

]
= lim

h→0

[
ncn−1 +

n(n− 1)

2!
cn−2h+ · · ·+ hn−1

]
= ncn−1.

Therefore, the equation of the tangent line through (c, cn) is

y − cn = ncn−1(x− c).

For n = 4 and c = 2, we find the slope, m, and equation for the tangent line
to the graph of f(x) = x4 at c = 2:

m = 4c3 = 32

y − 24 = 32(x− 2) or y − 16 = 32(x− 2).

Definition 2.2.1 Suppose that a function f is defined on a closed interval
[a, b] and a < c < b. Then c is called a critical point of f if the slope of the
line tangent to the graph of f at (c, f(c)) is zero or undefined. The slope
function of f at c is defined by

slope (f(x), c) = lim
h→0

f(c+ h)− f(c)

h

= lim
x→c

f(x)− f(c)

x− c
.

Example 2.2.9 Determine the slope functions and critical points of the
following functions:

(i) f(x) = sinx, 0 ≤ x ≤ 2π (ii) f(x) = cosx, 0 ≤ x ≤ 2π
(iii) f(x) = |x|, −1 ≤ x ≤ 1 (iv) f(x) = x3 − 4x, −2 ≤ x ≤ 2
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Part (i) In Example 28, we derived the slope function formula for sinx,
namely

slope (sinx, c) = cos c.

Since cos c is defined for all c, the non-end point critical points on [0, 2π]
are π/2 and 3π/2 where the cosine has a zero value. These critical points
correspond to the maximum and minimum values of sinx.

Part (ii) In Example 29, we derived the slope function formula for cosx,
namely

slope (cosx, c) = − sin c.

The critical points are obtained by solving the following equation for c:

− sin c = 0, 0 ≤ c ≤ 2π

c = 0, π, 2π.

These values of c correspond to the maximum value of cosx at c = 0 and 2π,
and the minimum value of cosx at c = π.

Part (iii) slope (|x|, c) = lim
x→c

|x| − |c|
x− c

= lim
x→c

|x| − |c|
x− c

· |x|+ |c|
|x|+ |c|

= lim
x→c

x2 − c2

(x− c)(|x|+ |c|)

= lim
x→c

x+ c

|x|+ |c|

=
2c

2|c|

=
c

|c|

=


1 if c > 0
−1 if c < 0
undefined if c = 0
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The only critical point is c = 0, where the slope function is undefined. This
critical point corresponds to the minimum value of |x| at c = 0. The slope
function is undefined because the tangent line does not exist at c = 0. There
is a sharp corner at c = 0.

Part (iv) The slope function for f(x) = x3 − 4x is obtained as follows:

slope (f(x), c) = lim
h→0

1

h
[((c+ h)3 − 4(c+ h))− (c3 − 4c)]

= lim
h→0

1

h
[c3 + 3c2h+ 3ch2 + h3 − 4c− 4h− c3 + 4c]

= lim
h→0

1

h
[3c2h+ 3ch2 + h3 − 4h]

= lim
h→0

[3c2 + 3ch+ h2 − 4]

= 3c2 − 4

graph

The critical points are obtained by solving the following equation for c:

3c2 − 4 = 0

c = ± 2√
3

At c =
−2√

3
, f has a local maximum value of

16

3
√

3
and at c =

2√
3
, f has a

local minimum value of
−16

3
√

3
. The end point (−2, 0) has a local end-point

minimum and the end point (2, 0) has a local end-point maximum.

Remark 7 The zeros and the critical points of a function are helpful in
sketching the graph of a function.
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Exercises 2.2

1. Express the equations of the lines satisfying the given information in the
form y = mx+ b.

(a) Line passing through (2, 4) and (5,−2)

(b) Line passing through (1, 1) and (3, 4)

(c) Line with slope 3 which passes through (2, 1)

(d) Line with slope 3 and y-intercept 4

(e) Line with slope 2 and x-intercept 3

(f) Line with x-intercept 2 and y-intercept 4.

2. Two oblique lines are parallel if they have the same slope. Two oblique
lines are perpendicular if the product of their slopes is −1. Using this
information, solve the following problems:

(a) Find the equation of a line that is parallel to the line with equation
y = 3x− 2 which passes through (1, 4).

(b) Solve problem (a) when “parallel” is changed to “perpendicular.”

(c) Find the equation of a line with y-intercept 4 which is parallel to
y = −3x+ 1.

(d) Solve problem (c) when “parallel” is changed to “perpendicular.”

(e) Find the equation of a line that passes through (1, 1) and is

(i) parallel to the line with equation 2x− 3y = 6.

(ii) perpendicular to the line with equation 3x+ 2y = 6

3. For each of the following functions f(x) and values c,

(i) derive the slope function, slope (f(x), c) for arbitrary c;

(ii) determine the equations of the tangent line and normal line (perpen-
dicular to tangent line) at the point (c, f(c)) for the given c;

(iii) determine all of the critical points (c, f(c)).

(a) f(x) = x2 − 2x, c = 3

(b) f(x) = x3 , c = 1
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(c) f(x) = sin(2x), c =
π

12

(d) f(x) = cos(3x), c =
π

9
(e) f(x) = x4 − 4x2, c = −2, 0, 2,−

√
2,
√

2.

2.3 Limits and Sequences

We begin with the definitions of sets, sequences, and the completeness prop-
erty, and state some important results. If x is an element of a set S, we write
x ∈ S, read “x is in S.” If x is not an element of S, then we write x /∈ S,
read “x is not in S.”

Definition 2.3.1 If A and B are two sets of real numbers, then we define

A ∩B = {x : x ∈ A and x ∈ B}

and

A ∪B = {x : x ∈ A or x ∈ B or both}.

We read “A∩B” as the “intersection of A and B.” We read “A∪B” as the
“union of A and B.” If A ∩B is the empty set, ∅, then we write A ∩B = ∅.

Definition 2.3.2 Let A be a set of real numbers. Then a number m is said
to be an upper bound of A if x ≤ m for all x ∈ A. The number m is said to
be a least upper bound of A, written lub(A) if and only if,

(i) m is an upper bound of A, and,

(ii) if q < m, then there is some x ∈ A such that q < x ≤ m.

Definition 2.3.3 Let B be a set of real numbers. Then a number ` is said
to be a lower bound of B if ` ≤ y for each y ∈ B. This number ` is said to
be the greatest lower bound of B, written, glb(b), if and only if,

(i) ` is a lower bound of B, and,
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(ii) if ` < p, then there is some element y ∈ B such that ` ≤ y < p.

Definition 2.3.4 A real number p is said to be a limit point of a set S if
and only if every open interval that contains p also contains an element q of
S such that q 6= p.

Example 2.3.1 Suppose A = [1, 10] and B = [5, 15].
ThenA∩B = [5, 10], A∪B = [1, 15], glb(A) = 1, lub(A) = 10, glb(B) = 5

and lub(B) = 15. Each element of A is a limit point of A and each element
of B is a limit point of B.

Example 2.3.2 Let S =

{
1

n
: n is a natural number

}
.

Then no element of S is a limit point of S. The number 0 is the only
limit point of S. Also, glb(S) = 0 and lub(S) = 1.
Completeness Property: The completeness property of the set R of all real
numbers states that if A is a non-empty set of real numbers and A has an
upper bound, then A has a least upper bound which is a real number.

Theorem 2.3.1 If B is a non-empty set of real numbers and B has a lower
bound, then B has a greatest lower bound which is a real number.

Proof. Let m denote a lower bound for B. Then m ≤ x for every x ∈ B.
Let A = {−x : x ∈ B}. then −x ≤ −m for every x ∈ B. Hence, A is a
non-empty set that has an upper bound −m. By the completeness property,
A has a least upper bound lub(A). Then, -lub(A) = glb(B) and the proof is
complete.

Theorem 2.3.2 If x1 and x2 are real numbers such that x1 < x2, then

x1 <
1

2
(x1 + x2) < x2.

Proof. We observe that

x1 ≤
1

2
(x1 + x2) < x2 ↔ 2x1 < x1 + x2 < 2x2

↔ x1 < x2 < x2 + (x2 − x1).

This completes the proof.
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Theorem 2.3.3 Suppose that A is a non-empty set of real numbers and
m = lub(A). If m /∈ A, then m is a limit point of A.

Proof. Let an open interval (a, b) contain m. That is, a < m < b. By the
definition of a least upper bound, a is not an upper bound for A. Therefore,
there exists some element q of A such that a < q < m < b. Thus, every open
interval (a, b) that contains m must contain a point of A other than m. It
follows that m is a limit point of A.

Theorem 2.3.4 (Dedekind-Cut Property). The set R of all real numbers is
not the union of two non-empty sets A and B such that

(i) if x ∈ A and y ∈ B, then x < y,

(ii) A contains no limit point of B, and,

(iii) B contains no limit point of A.

Proof. Suppose that R = A ∪ B where A and B are non-empty sets that
satisfy conditions (i), (ii) and (iii). Since A and B are non-empty, there exist
real numbers a and b such that a ∈ A and b ∈ B. By property (i), a is
a lower bound for B and b is an upper bound for A. By the completeness
property and theorem 2.3.1, A has a least upper bound, say m, and B has a
greatest lower bound, say M . If m /∈ A, then m is a limit point of A. Since
B contains no limit point of A, m ∈ A. Similarly, M ∈ B. It follows that
m < M by condition (i). However, by Theorem 2.3.2,

m <
1

2
(m+M) < M.

The number
1

2
(m+M) is neither in A nor in B. This is a contradiction,

because R = A ∪B. This completes the proof.

Definition 2.3.5 An empty set is considered to be a finite set. A non-empty
set S is said to be finite if there exists a natural number n and a one-to-one
function that maps S onto the set {1, 2, 3, . . . , n}. Then we say that S has n
elements. If S is not a finite set, then S is said to be an infinite set. We say
that an infinite set has an infinite number of elements. Two sets are said to
have the same number of elements if there exists a one-to-one correspondence
between them.
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Example 2.3.3 Let A = {a, b, c}, B = {1, 2, 3}, C = {1, 2, 3, . . . }, and D =
{0, 1,−1, 2,−2, . . . }.

In this example, A and B are finite sets and contain three elements each.
The sets C and D are infinite sets and have the same number of elements. A
one-to-one correspondence f between n, C and D can be defined as f : C →
D such that

f(1) = 0, f(2n) = n and f(2n+ 1) = −n for n = 1, 2, 3, . . . .

Definition 2.3.6 A set that has the same number of elements as C =
{1, 2, 3, . . . } is said to be countable. An infinite set that is not countable
is said to be uncountable.

Remark 8 The set of all rational numbers is countable but the set of all real
numbers is uncountable.

Definition 2.3.7 A sequence is a function, say f , whose domain is the set
of all natural numbers. It is customary to use the notation f(n) = an, n =
1, 2, 3, . . . . We express the sequence as a list without braces to avoid confusion
with the set notation:

a1, a2, a3, . . . , an, . . . or, simply, {an}∞n=1.

The number an is called the nth term of the sequence. The sequence is said
to converge to the limit a if for every ε > 0, there exists some natural number,
say N , such that |am − a| < ε for all m ≥ N . We express this convergence
by writing

lim
n→∞

an = a.

If a sequence does not converge to a limit, it is said to diverge or be divergent.

Example 2.3.4 For each natural number n, let

an = (−1)n, bn = 2−n, cn = 2n, dn =
(−1)n

n
.

The sequence {an} does not converge because its terms oscillate between −1
and 1. The sequence {bn} converges to 0. The sequence {cn} diverges to ∞.
The sequence {dn} converges to 0.
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Definition 2.3.8 A sequence {an}∞n=1 diverges to ∞ if, for every natural
number N , there exists some m such that

am+j ≥ N for all j = 1, 2, 3, · · · .

The sequence {an}∞n=1 is said to diverge to −∞ if, for every natural number
N , there exists some m such that

am+j ≤ −N , for all j = 1, 2, 3, . . . .

Theorem 2.3.5 If p is a limit point of a non-empty set A, then every open
interval that contains p must contain an infinite subset of A.

Proof. Let some open interval (a, b) contain p. Suppose that there are only
two finite subsets {a1, a2, . . . , an} and {b1, b2, . . . , bm} of distinct elements of
A such that

a < a1 < a2 < · · · < an < p < bm < bm−1 < · · · < b1 < b.

Then the open interval (an, bm) contains p but no other points of A distinct
from p. Hence p is not a limit point of A. The contradiction proves the
theorem.

Theorem 2.3.6 If p is a limit point of a non-empty set A, then there exists
a sequence {pn}∞n=1, of distinct points pn of A, that converges to p.

Proof. Let a1 = p− 1

2
, b1 = p+

1

2
. Choose a point p1 of A such that p1 6= p

and a1 < p1 < p < b1 or a1 < p < p1 < b1. If a1 < p1 < p < b1, then define

a2 = max

{
p1, p−

1

22

}
and b2 = p+

1

22
. Otherwise, define a2 = p− 1

22
and

b2 = min

{
p1, p+

1

22

}
. Then the open interval (a2, b2) contains p but not p1

and b2 − a2 ≤
1

2
. We repeat this process indefinitely to select the sequence

{pn}, of distinct points pn of A, that converges to p. The fact that {pn} is an
infinite sequence is guaranteed by Theorem 2.3.5. This completes the proof.

Theorem 2.3.7 Every bounded infinite set A has at least one limit point p
and there exists a sequence {pn}∞n=1, of distinct points of A, that converges
to p.
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Proof. We will show that A has a limit point. Since A is bounded, there
exists an open interval (a, b) that contains all points of A. Then either(
a,

1

2
(a+ b)

)
contains an infinite subset of A or

(
1

2
(a+ b), b

)
contains an

infinite subset of A. Pick one of the two intervals that contains an infinite
subset of A. Let this interval be denoted (a1, b1). We continue this process
repeatedly to get an open interval (an, bn) that contains an infinite subset of

A and |bn − an| =
|b− a|

2n
. Then the lub of the set {an, a2, . . . } and glb of

the set {b1, b2, . . . } are equal to some real number p. It follows that p is a
limit point of A. By Theorem 2.3.6, there exists a sequence {pn}, of distinct
points of A, that converges to p. This completes the proof.

Definition 2.3.9 A set is said to be a closed set if it contains all of its limit
points. The complement of a closed set is said to be an open set. (Recall
that the complement of A is {x ∈ R : x /∈ A}.)

Theorem 2.3.8 The interval [a, b] is a closed and bounded set. Its comple-
ment (−∞, a) ∪ (b,∞) is an open set.

Proof. Let p ∈ (−∞, a) ∪ (b,∞). Then −∞ < p < a or b < p < ∞. The

intervals

(
p− 1

2
,

1

2
(a+ p)

)
or

(
1

2
(b+ p), p+

1

2

)
contain no limit point of

[a, b]. Thus [a, b] must contain its limit points, because they are not in the
complement.

Theorem 2.3.9 If a non-empty set A has no upper bound, then there exists
a sequence {pn}∞n=1, of distinct points of A, that diverges to∞. Furthermore,
every subsequence of {pn}∞n=1 diverges to ∞

Proof. Since 1 is not an upper bound of A, there exists an element p1 of A
such that 1 < p1. Let a1 = max{2, p1}. Choose a point, say p2, of A such
that a1 < p2. By repeating this process indefinitely, we get the sequence
{pn} such that pn > n and p1 < p2 < p3 < . . . . Clearly, the sequence
{pn}∞n=1 diverges to ∞. It is easy to see that every subsequence of {pn}∞n=1

also diverges to ∞.

Theorem 2.3.10 If a non-empty set B has no lower bound, then there exists
a sequence {qn}∞n=1, of distinct points of B, that diverges to −∞. Further-
more, every subsequence of {qn}∞n=1 diverges to −∞.
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Proof. Let A = {−x : x ∈ B}. Then A has no upper bound. By Theorem
2.3.9, there exists a sequence {pn}∞n=1, of distinct points of A, that diverges to
∞. Let qn = −pn. Then {qn}∞n=1 is a sequence that meets the requirements
of the Theorem 2.3.10. Also, every subsequence of {qn}∞n=1 diverges to −∞.

Theorem 2.3.11 Let {pn}∞n=1 be a sequence of points of a closed set S that
converges to a point p of S. If f is a function that is continuous on S, then
the sequence {f(pn)}∞n=1 converges to f(p). That is, continuous functions
preserve convergence of sequences on closed sets.

Proof. Let ε > 0 be given. Since f is continuous at p, there exists a δ > 0
such that

|f(x)− f(p)| < ε whenever |x− p| < δ, and x ∈ S.

The open interval (p− δ, p+ δ) contains the limit point p of S. The sequence
{pn}∞n=1 converges to p. There exists some natural numbers N such that for
all n ≥ N ,

p− δ < pn < p+ δ.

Then
|f(pn)− f(p)| < ε whenever n ≥ N.

By definition, {f(pn)}∞n=1 converges to f(p). We write this statement in the
following notation:

lim
n→∞

f(pn) = f
(

lim
n→∞

pn

)
.

That is, continuous functions allow the interchange of taking the limit and
applying the function. This completes the proof of the theorem.

Corollary 1 If S is a closed and bounded interval [a, b], then Theorem 2.3.11
is valid for [a, b].

Theorem 2.3.12 Let a function f be defined and continuous on a closed
and bounded set S. Let Rf = {f(x) : x ∈ S}. Then Rf is bounded.

Proof. Suppose that Rf has no upper bound. Then there exists a sequence
{f(xn)}∞n=1, of distinct points of Rf , that diverges to ∞. The set A =
{x1, x2, . . . } is an infinite subset of S. By Theorem 2.3.7, the set A has
some limit point, say p. Since S is closed, p ∈ S. There exists a sequence
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{pn}∞n=1, of distinct points of A that converges to p. By the continuity of
f, {f(pn)}∞n=1 converges to f(p). Without loss of generality, we may assume
that {f(pn)}∞n=1 is a subsequence of {f(xn)}∞n=1. Hence {f(pn)}∞n=1 diverges
to∞, and f(p) =∞. This is a contradiction, because f(p) is a real number.
This completes the proof of the theorem.

Theorem 2.3.13 Let a function f be defined and continuous on a closed
and bounded set S. Let Rf = {f(x) : x ∈ S}. Then Rf is a closed set.

Proof. Let q be a limit point of Rf . Then there exists a sequence {f(xn)}∞n=1,
of distinct points of Rf , that converges to q. As in Theorem 2.3.12, the set
A = {x1, x2, . . . } has a limit point p, p ∈ S, and there exists a subsequence
{pn}∞n=1, of {xn}∞n=1 that converges to p. Since f is defined and continuous
on S,

q = lim
n→∞

f(pn) = f
(

lim
n→∞

pn

)
= f(p).

Therefore, q ∈ Rf and Rf is a closed set. This completes the proof of the
theorem.

Theorem 2.3.14 Let a function f be defined and continuous on a closed
and bounded set S. Then there exist two numbers c1 and c2 in S such that
for all x ∈ S,

f(c1) ≤ f(x) ≤ f(c2).

Proof. By Theorems 2.3.12 and 2.3.13, the range, Rf , of f is a closed and
bounded set. Let

m = glb(Rf ) and M = lub(Rf ).

Since Rf is a closed set, m and M are in Rf . Hence, there exist two numbers,
say c1 and c2, in S such that

m = f(c1) and M = f(c2).

This completes the proof of the theorem.

Definition 2.3.10 A set S of real numbers is said to be compact, if and
only if S is closed and bounded.

Theorem 2.3.15 A continuous function maps compact subsets of its domain
onto compact subsets of its range.
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Proof. Theorems 2.3.13 and 2.3.14 together prove Theorem 2.1.15.

Definition 2.3.11 Suppose that a function f is defined and continuous on
a compact set S. A number m is said to be an absolute minimum of f on S
if m ≤ f(x) for all x ∈ S and m = f(c) for some c in S.

A number M is said to be an absolute maximum of f on S if M ≥ f(x)
for all x ∈ S and M = f(d) for some d in S.

Theorem 2.3.16 Suppose that a function f is continuous on a compact set
S. Then there exist two points c1 and c2 in S such that f(c1) is the absolute
minimum and f(c2) is the absolute maximum of f on S.

Proof. Theorem 2.3.14 proves Theorem 2.3.16.

Exercises 2.3

1. Find lub(A), glb(A) and determine all of the limit points of A.

(a) A = {x : 1 ≤ x2 ≤ 2}
(b) A = {x : x sin(1/x), x > 0}
(c) A = {x2/3 : −8 < x < 8}
(d) A = {x : 2 < x3 < 5}
(e) A = {x : x is a rational number and 2 < x3 < 5}

2. Determine whether or not the following sequences converge. Find the
limit of the convergent sequences.

(a)

{
n

n+ 1

}∞
n=1

(b)
{ n
n2

}∞
n=1

(c)

{
(−1)n

n

3n+ 1

}∞
n=1

(d)

{
n2

n+ 1

}∞
n=1

(e) {1 + (−1)n}∞n=1
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3. Show that the Dedekind-Cut Property is equivalent to the completeness
property.

4. Show that a convergent sequence cannot have more than one limit point.

5. Show that the following principle of mathematical induction is valid: If
1 ∈ S, and k + 1 ∈ S whenever k ∈ S, then S contains the set of all
natural numbers. (Hint: Let A = {n : n /∈ S}. A is bounded from below
by 2. Let m = glb(A). Then k = m− 1 ∈ S but k + 1 = m /∈ S. This is
a contradiction.)

6. Prove that every rational number is a limit point of the set of all rational
numbers.

7. Let {an}∞n=1 be a sequence of real numbers. Then

(i) {an}∞n=1 is said to be increasing if an < an+1, for all n.

(ii) {an}∞n=1 is said to be non-decreasing if an ≤ an+1 for all n.

(iii) {an}∞n=1 is said to be non-increasing if an ≥ an+1 for all n.

(iv) {an}∞n=1 is said to be decreasing if an > an+1 for all n.

(v) {an}∞n=1 is said to be monotone if it is increasing, non-decreasing,
non-increasing or decreasing.

(a) Determine which sequences in Exercise 2 are monotone.

(b) Show that every bounded monotone sequence converges to some
point.

(c) A sequence {bm}∞m=1 is said to be a subsequence of the {an}∞n=1 if and
only if every bm is equal to some an, and if

bm1 = an1 and bm2 = an2 and n1 < n2, then m1 < m2.

That is, a subsequence preserves the order of the parent sequence.
Show that if {an}∞n=1 converges to p, then every subsequence of
{an}∞n=1 also converges to p

(d) Show that a divergent sequence may contain one or more convergent
sequences.
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(e) In problems 2(c) and 2(e), find two convergent subsequences of each.
Do the parent sequences also converge?

8. (Cauchy Criterion) A sequence {an}∞n=1 is said to satisfy a Cauchy Crite-
rion, or be a Cauchy sequence, if and only if for every ε > 0, there exists
some natural number N such that (an − am) < ε whenever n ≥ N and
m ≥ N . Show that a sequence {an}∞n=1 converges if and only if it is a
Cauchy sequence. (Hint: (i) If {an} converges to p, then for every ε > 0
there exists some N such that if n ≥ N , then |an − p| < ε/2. If m ≥ N
and n ≥ N , then

|an − am| = |(an − p) + (p− am)|
≤ |an − p|+ |am − p| (why?)

<
ε

2
+
ε

2
= ε.

So, if {an} converges, then it is Cauchy.

(ii) Suppose {an} is Cauchy. Let ε > 0. Then there exists N > 0 such
that

|an − am| < ε whenever n ≥ N and m ≥ N.

In particular,
|an − aN | < ε whenever n ≥ N.

Argue that the sequence {an} is bounded. Unless an element is repeated
infinitely many times, the set consisting of elements of the sequence has a
limit point. Either way, it has a convergent subsequence that converges,
say to p. Then show that the Cauchy Criterion forces the parent sequence
{an} to converge to p also.)

9. Show that the set of all rational numbers is countable. (Hint: First show
that the positive rationals are countable. List them in reduced form
without repeating according to denominators, as follows:

0

1
,
1

1
,
2

1
,
3

1
,
4

1
, · · · .

1

2
,
3

2
,
5

2
,
2

2
, · · · .

1

3
,
2

3
,
4

3
,
5

3
,
7

3
,
8

3
,
10

3
, · · · .
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Count them as shown, one-by-one. That is, list them as follows:{
0, 1,

1

2
,

1

3
,

3

2
, 2, 3,

5

2
,

2

3
,

1

4
,

1

5
, · · ·

}
.

Next, insert the negative rational right after its absolute value, as follows:{
0, 1,−1,

1

2
, −1

2
,

1

3
, −1

3
, · · ·

}
.

Now assign the even natural numbers to the positive rationals and the
odd natural numbers to the remaining rationals.)

10. A non-empty set S has the property that if x ∈ S, then there is some
open interval (a, b) such that x ∈ (a, b) ⊂ S. Show that the complement
of S is closed and hence S is open.

11. Consider the sequence

{
an =

π

2
+

(−1)n

n

}∞
n=1

. Determine the conver-

gent or divergent properties of the following sequences:

(a) {sin(an)}∞n=1

(b) {cos(an)}∞n=1

(c) {tan(an)}∞n=1

(d) {cot(an)}∞n=1

(e) {sec(an)}∞n=1

(f) {csc(an)}∞n=1

12. Let

(a) f(x) = x2,−2 ≤ x ≤ 2

(b) g(x) = x3,−2 ≤ x ≤ 2

(c) h(x) =
√
x, 0 ≤ x ≤ 4

(d) p(x) = x1/3,−8 ≤ x ≤ 8

Find the absolute maximum and absolute minimum of each of the func-
tions f, g, h, and p. Determine the points at which the absolute maximum
and absolute minimum are reached.
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13. A function f is said to have a fixed point p if f(p) = p. Determine all of
the fixed points of the functions f, g, h, and p in Exercise 12.

14. Determine the range of each of the functions in Exercise 12, and show
that it is a closed and bounded set.

2.4 Properties of Continuous Functions

We recall that if two functions f and g are defined and continuous on a
common domain D, then f + g, f − g, af + bg, g · f are all continuous on
D, for all real numbers a and b. Also, the quotient f/g is continuous for all
x in D where g(x) 6= 0. In section 2.3 we proved the following:

(i) Continuous functions preserve convergence of sequences.

(ii) Continuous functions map compact sets onto compact sets.

(iii) If a function f is continuous on a closed and bounded interval [a, b], then
{f(x) : x ∈ [a, b]} ⊆ [m,M ], where m and M are absolute minimum and
absolute maximum of f , on [a, b], respectively.

Theorem 2.4.1 Suppose that a function f is defined and continuous on
some open interval (a, b) and a < c < b.

(i) If f(c) > 0, then there exists some δ > 0 such that f(x) > 0 whenever
c− δ < x < c+ δ.

(ii) If f(c) < 0, then there exists some δ > 0 such that f(x) < 0 whenever
c− δ < x < c+ δ.

Proof. Let ε =
1

2
|f(c)|. For both cases (i) and (ii), ε > 0. Since f is

continuous at c and ε > 0, there exists some δ > 0 such that a < (c − δ) <
c < (c+ δ) < b and

|f(x)− f(c)| < ε whenever |x− c| < δ.
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We observe that

|f(x)− f(c)| < ε↔ |f(x)− f(c)| < 1

2
|f(c)|

↔ −1

2
|f(c)| < f(x)− f(c) <

1

2
|f(c)|

↔ f(c)− 1

2
|f(c)| < f(x) < f(c) +

1

2
|f(c)|.

We note also that the numbers f(c)− 1

2
|f(c)| and f(c) +

1

2
|f(c)| have the

same sign as f(c). Therefore, for all x such that |x−c| < δ, we have f(x) > 0
in part (i) and f(x) < 0 in part (ii) as required. This completes the proof.

Theorem 2.4.2 Suppose that a function f is defined and continuous on
some closed and bounded interval [a, b] such that either

(i) f(a) < 0 < f(b) or (ii) f(b) < 0 < f(a).

Then there exists some c such that a < c < b and f(c) = 0.

Proof. Part (i) Let A {x : x ∈ [a, b] and f(x) < 0}. Then A is non-
empty because it contains a. Since A is a subset of [a, b], A is bounded. Let
c1 = lub(A). We claim that f(c1) = 0. Suppose f(c1) 6= 0. Then f(c1) > 0
or f(c1) < 0. By Theorem 2.4.1, there exists δ > 0 such that f(x) has the
same sign as f(c1) for all x such that c1 − δ < x < c1 + δ.

If f(c1) < 0, then f(x) < 0 for all x such that c1 < x < c1 + δ and hence
c1 6= lub(A). If f(c1) > 0, then f(x) > 0 for all x such that c1 − δ < x < c1

and hence c1 6= lub(A). This contradiction proves that f(c1) = 0.

Part (ii) is proved by a similar argument.

Example 2.4.1 Show that Theorem 2.4.2 guarantees the validity of the fol-
lowing method of bisection for finding zeros of a continuous function f :

Bisection Method: We wish to solve f(x) = 0 for x.

Step 1. Locate two points such that f(a)f(b) < 0.

Step 2. Determine the sign of f

(
1

2
(a+ b)

)
.
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(i) If f

(
1

2
(a+ b)

)
= 0, stop the procedure;

1

2
(a+ b) is a zero of f .

(ii) If f

(
1

2
(a+ b)

)
· f(a) < 0, then let a1 = a, b1 =

1

2
(a+ b).

(iii) If f

(
1

2
(a+ b)

)
· f(b) < 0, then let a1 =

1

2
(a+ b), b1 = b.

Then f(a1) · f(b1) < 0, and |b1 − a1| =
1

2
(b− a).

Step 3. Repeat Step 2 and continue the loop between Step 2 and Step 3 until

|bn − an|/2n < Tolerance Error.

Then stop.

This method is slow but it approximates the number c guaranteed by
Theorem 2.4.2. This method is used to get close enough to the zero. The
switchover to the faster Newton’s Method that will be discussed in the next
section.

Theorem 2.4.3 (Intermediate Value Theorem). Suppose that a function
is defined and continuous on a closed and bounded interval [a, b]. Suppose
further that there exists some real number k such that either (i) f(a) < k <
f(b) or (ii) f(b) < k < f(a). Then there exists some c such that a < c < b
and f(c) = k.

Proof. Let g(x) = f(x) − k. Then g is continuous on [a, b] and either (i)
g(a) < 0 < g(b) or (ii) g(b) < 0 < g(a). By Theorem 2.4.2, there exists some
c such that a < c < b and g(c) = 0. Then

0 = g(c) = f(c)− k

and

f(c) = k

as required. This completes the proof.
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Theorem 2.4.4 Suppose that a function f is defined and continuous on a
closed and bounded interval [a, b]. Then there exist real numbers m and M
such that

[m,M ] = {f(x) : a ≤ x ≤ b}.

That is, a continuous function f maps a closed and bounded interval [a, b]
onto a closed and bounded interval [m,M ].

Proof. By Theorem 2.3.14, there exist two numbers c1 and c2 in [a, b] such
that for all x ∈ [a, b],

m = f(c1) ≤ f(x) ≤ f(c2) = M.

By the Intermediate Value Theorem (2.4.3), every real value between m and
M is in the range of f contained in the interval with end points c1 and c2.
Therefore,

[m,M ] = {f(x) : a ≤ x ≤ b}.

Recall that m = absolute minimum and M = absolute maximum of f on
[a, b]. This completes the proof of the theorem.

Theorem 2.4.5 Suppose that a function f is continuous on an interval [a, b]
and f has an inverse on [a, b]. Then f is either strictly increasing on [a, b]
or strictly decreasing on [a, b].

Proof. Since f has in inverse on [a, b], f is a one-to-one function on [a, b].
So, f(a) 6= f(b). Suppose that f(a) < f(b). Let

A = {x : f is strictly increasing on [a, x] and a ≤ x ≤ b}.

Let c be the least upper bound of A. If c = b, then f is strictly increasing on
[a, b] and the proof is complete. If c = a, then there exists some d such that
a < d < b and f(d) < f(a) < f(b). By the intermediate value theorem there
must exist some x such that d < x < b and f(x) = f(a). This contradicts the
fact that f is one-to-one. Then a < c < b and there exists some d such that
c < d < b and f(a) < f(d) < f(c). By the intermediate value theorem there
exists some x such that a < x < c and f(x) = f(c) and f is not one-to-one.
It follows that c must equal b and f is strictly increasing on [a, b]. Similarly,
if f(a) > f(b), f will be strictly decreasing on [a, b]. This completes the
proof of the theorem.
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Theorem 2.4.6 Suppose that a function f is continuous on [a, b] and f
is one-to-one on [a, b]. Then the inverse of f exists and is continuous on
J = {f(x) : a ≤ x ≤ b}.

Proof. By Theorem 2.4.4, J = [m,M ] where m and M are the absolute
minimum and the absolute maximum of f on [a, b]. Also, there exist numbers
c1 and c2 on [a, b] such that f(c1) = m and f(c2) = M . Since f is either
strictly increasing or strictly decreasing on [a, b], either a = c1 and b = c2

or a = c2 and b = c1. Consider the case where f is strictly increasing and
a = c1, b = c2. Let m < d < M and d = f(c). Then a < c < b. We show
that f−1 is continuous at d. Let ε > 0 be such that a < c− ε < c < c+ ε2b.
Let d1 = f(c − ε), d2 = f(c + ε). Since f is strictly increasing, d1 < d <
d2. Let δ = min(d − d1, d2 − d). It follows that if 0 < |y − d| < δ, then
|f−1(y)−f−1(d)| < ε and f−1 is continuous at d. Similarly, we can prove the
one-sided continuity of f−1 at m and M . A similar argument will prove the
continuity of f−1 if f is strictly decreasing on [a, b].

Theorem 2.4.7 Suppose that a function f is continuous on an interval I
and f is one-to-one on I. Then the inverse of f exists and is continuous on
I.

Proof. Let J = {f(x) : x is in I}. By the intermediate value theorem
J is also an interval. Let d be an interior point of J . Then there exists a
closed interval [m,M ] contained in I and m < d < M . Let c1 = f−1(m), c2 =
f−1(b), a = min{c1, c2} Since the theorem is valid on [a, b], f−1 is continuous
at d. The end points can be treated in a similar way. This completes the
proof of the theorem. (See the proof of Theorem 2.4.6).

Theorem 2.4.8 (Fixed Point Theorem). Let f satisfy the conditions of
Theorem 2.4.4. Suppose further that a ≤ m ≤ M ≤ b, where m and M are
the absolute minimum and absolute maximum, respectively, of f on [a, b].
Then there exists some p ∈ [a, b] such that f(p) = p. That is, f has a fixed
point p on [a, b].

Proof. If f(a) = a, then a is a fixed point. If f(b) = b, then b is a fixed
point. Suppose that neither a nor b is a fixed point of f . Then we define

g(x) = f(x)− x

for all x ∈ [a, b].
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We observe that g(b) < 0 < g(a). By the Intermediate Value Theorem
(2.4.3) there exists some p such that a < p < b and g(p) = 0. Then

0 = g(p) = f(p)− p

and hence,
f(p) = p

and p is a fixed point of f on [a, b]. This completes the proof.

Remark 9 The Fixed Point Theorem (2.4.5) is the basis of the fixed point
iteration methods that are used to locate zeros of continuous functions. We
illustrate this concept by using Newton’s Method as an example.

Example 2.4.2 Consider f(x) = x3 + 4x− 10.
Since f(1) = −5 and f(2) = 6, by the Intermediate Value Theorem (2.4.3)

there is some c such that 1 < c < 2 and f(c) = 0. We construct a function g
whose fixed points agree with the zeros of f . In Newton’s Method we used
the following general formula:

g(x) = x− f(x)

slope(f(x), x)
.

Note that if f(x) = 0, then g(x) = x, provided slope (f(x), x) 6= 0. We first
compute

Slope(f(x), x) = lim
h→0

1

h
[f(x+ h)− f(x)]

= lim
h→0

1

h
[{(x+ h)3 + 4(x+ h)− 10} − {x3 + 4x− 10}]

= lim
h→0

1

h
[3x2h+ 3xh2 + h3 + 4h]

= lim
h→0

[3x2 + 3xh+ h2 + 4]

= 3x2 + 4.

We note that 3x2 + 4 is never zero. So, Newton’s Method is defined.
The fixed point iteration is defined by the equation

xn+1 = g(xn) = xn −
f(xn)

slope(f(x), xn)



90 CHAPTER 2. LIMITS AND CONTINUITY

or

xn+1 = xn −
x3
n + 4xn − 10

3x2
n + 4

.

Geometrically, we draw a tangent line at the point (xn, f(xn)) and label the
x-coordinate of its point of intersection with the x-axis as xn+1.

graph

Tangent line: y − f(xn) = m(x− xn)

0− f(xn) = m(xn+1 − xn)

xn+1 = xn −
f(xn)

m
,

where m = slope (f(x), xn) = 3x2
n + 4.

To begin the iteration we required a guess x0. This guess is generally
obtained by using a few steps of the Bisection Method described in Example
36. Let x0 = 1.5. Next, we need a stopping rule. Let us say that we will
stop when a few digits of xn do not change anymore. Let us stop when

|xn+1 − xn| < 10−4.

We will leave the computation of x1, x2, x3, . . . as an exercise.

Remark 10 Newton’s Method is fast and quite robust as long as the initial
guess is chosen close enough to the intended zeros.

Example 2.4.3 Consider the same equation (x3 + 4x − 10 = 0) as in the
preceding example.

We solve for x in some way, such as,

x =

(
10

4 + x

)1/2

= g(x).
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In this case the new equation is good enough for positive roots. We then
define

xn+1 = g(xn), x0 = 1.5

and stop when

|xn+1 − xn| < 10−4.

We leave the computations of x1, x2, x3 . . . as an exercise. Try to compare the
number of iterations needed to get the same accuracy as Newton’s Method
in the previous example.

Exercises 2.4

1. Perform the required iterations in the last two examples to approximate
the roots of the equation x3 + 4x− 10 = 0.

2. Let f(x) = x − cosx. Then slope (f(x), x) = 1 + sinx > 0 on
[
0,
π

2

]
.

Approximate the zeros of f(x) on
[
0,
π

2

]
by Newton’s Method:

xn+1 = xn −
xn − cosxn
1 + sinxn

, x0 = 0.8

and stop when

|xn+1 − xn| < 10−4.

3. Let f(x) = x − 0.8 − 0.4 sinx on
[
0,
π

2

]
. then slope (f(x), x) = 1 −

0.4 cosx > 0 on
[
0,
π

2

]
. Approximate the zero of f using Newton’s

Iteration

xn+1 = xn −
xn − 0.8− 0.4 sin(xn)

1− 0.4 cos(xn)
, x0 = 0.5

4. To avoid computing the slope function f , the Secant Method of iter-
ation uses the slope of the line going through the previous two points
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(xn, f(xn)) and (xn+1, f(xn+1)) to define xn+2 as follows: Given x0 and
x1, we define

xn+2 = xn+1 −
f(xn+1)(

f(xn+1)−f(xn)
xn+1−xn

)

xn+2 = xn+1 −
f(xn+1)(xn+1 − xn)

f(xn+1 − f(xn)

This method is slower than Newton’s Method, but faster than the Bi-
section. The big advantage is that we do not need to compute the slope
function for f . The stopping rule can be the same as in Newton’s Method.
Use the secant Method for Exercises 2 and 3 with x0 = 0.5, x1 = 0.7 and
|xn+1 − xn| < 10−4. Compare the number of iterations needed with
Newton’s Method.

5. Use the Bisection Method to compute the zero of x3+4x−10 on [1, 2] and
compare the number of iterations needed for the stopping rule |xn+1 −
xn| < 10−4.

6. A set S is said to be connected if S is not the union of two non-empty
sets A and B such that A contains no limit point of B and B contains
no limit point of A. Show that every closed and bounded interval [a, b]
is connected.

(Hint: Assume that [a, b] is not connected and [a, b] = A∪B, a ∈ A,B 6=
∅ as described in the problem. Let m = lub(A), M = glb(B). Argue

that m ∈ A and m ∈ B. Then
1

2
(m+M) /∈ (A ∪B). The contradiction

proves the result.

7. Show that the Intermediate Value Theorem (2.4.3) guarantees that con-
tinuous functions map connected sets onto connected sets. (Hint: Let
S be connected and f be continuous on S. Let Rf = {f(x) : x ∈ S}.
Suppose Rf = A ∪B,A 6= ∅, B 6= ∅, such that A contains no limit point
of B and B contains no limit point of A. Let U = {x ∈ S : f(x) ∈ A},
V = {x ∈ S : f(x) ∈ B}. Then S = U ∪ V, U 6= ∅ and V 6= ∅. Since S
is connected, either U contains a limit point of V or V contains a limit
point of U . Suppose p ∈ V and p is a limit point of U . Then choose a
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sequence {un} that converges to p, un ∈ U . By continuity, {f(un)} con-
verges to f(p). But f(un) ∈ A and f(p) ∈ B. This is a contradiction.)

8. Find all of the fixed points of the following:

(a) f(x) = x2, −4 ≤ x ≤ 4

(b) f(x) = x3, −2 ≤ x ≤ 2

(c) f(x) = x2 + 3x+ 1

(d) f(x) = x3 − 3x, −4 ≤ x ≤ 4

(e) f(x) = sinx

9. Determine which of the following sets are

(i) bounded, (ii) closed, (iii) connected.

(a) N = {1, 2, 3, . . . , }
(b) Q = {x : x is rational number}
(c) R = {x : x is a real number}
(d) B1 = {sinx : −π ≤ x ≤ π}
(e) B2 = {sinx : −π < x < π}

(f) B3 =

{
sinx :

−π
2

< x <
π

2

}
(g) B4 =

{
tanx :

−π
2

< x <
π

2

}
(h) C1 = [(−1, 0) ∪ (0, 1]

(i) C2 =

{
f(x) : −π ≤ x ≤ π, f(x) =

sinx

x
, x 6= 0; f(0) = 2

}
(j) C3 =

{
g(x) : −π ≤ x ≤ π, g(x) =

1− cosx

x
, g(0) = 1

}
10. Suppose f is continuous on the set of all real numbers. Let the open

interval (c, d) be contained in the range of f . Let

A = {x : c < f(x) < d}.
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Show that A is an open set.

(Hint: Let p ∈ A. Then f(p) ∈ (c, d). Choose ε > 0 such that c <
p − ε < p + ε < d. Since f is continuous at p, there is δ > 0 such that
|f(x)−f(p)| < ε whenever |x−p| < δ. This means that the open interval
(p − δ, p + δ) is contained in A. By definition, A is open. This proves
that the inverse of a continuous function maps an open set onto an open
set.)

2.5 Limits and Infinity

The convergence of a sequence {an}∞n=1 depends on the limit of an as n tends
to ∞.

Definition 2.5.1 Suppose that a function f is defined on an open interval
(a, b) and a < c < b. Then we define the following limits:

(i) lim
x→c−

f(x) = +∞

if and only if for every M > 0 there exists some δ > 0 such that f(x) > M
whenever c− δ < x < c.

(ii) lim
x→c+

f(x) = +∞

if and only if for every M > 0 there exists some δ > 0 such that f(x) > M
whenever c < x < c+ δ.

(iii) lim
x→c

f(x) = +∞

if and only if for every M > 0 there exists some δ > 0 such that f(x) > M
whenever 0 < |x− c| < δ.

(iv) lim
x→c

f(x) = −∞

if and only if for every M > 0 there exists some δ > 0 such that f(x) <
−M whenever 0 < |x− c| < δ.

(v) lim
x→c+

f(x) = −∞

if and only if for every M > 0 there exists some δ > 0 such that f(x) <
−M whenever c < x < c+ δ.
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(vi) lim
x→c−

f(x) = −∞

if and only if for every M > 0 there exists some δ > 0 such that f(x) <
−M whenever c− δ < x < c.

Definition 2.5.2 Suppose that a function f is defined for all real numbers.

(i) lim
x→+∞

f(x) = L

if and only if for every ε > 0 there exists some M > 0 such that |f(x)−
L| < ε whenever x > M .

(ii) lim
x→−∞

f(x) = L

if and only if for every ε > 0 there exists some M > 0 such that |f(x)−
L| < ε whenever x < −M .

(iii) lim
x→+∞

f(x) =∞

if and only if for every M > 0 there exists some N > 0 such that
f(x) > M whenever x > N .

(iv) lim
x→+∞

f(x) = −∞

if and only if for every M > 0 there exists some N > 0 such that
f(x) < −M whenever x > M .

(v) lim
x→−∞

f(x) =∞

if and only if for every M > 0 there exists some N > 0 such that
f(x) > M whenever x < −N .

(vi) lim
x→−∞

f(x) = −∞

if and only if for every M > 0 there exists some N > 0 such that
f(x) < −M whenever x < −N .

Definition 2.5.3 The vertical line x = c is called a vertical asymptote to
the graph of f if and only if either

(i) lim
x→c

f(x) =∞ or −∞; or

(ii) lim
x→c−

f(x) =∞ or −∞; or both.
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Definition 2.5.4 The horizontal line y = L is a horizontal asymptote to the
graph of f if and only if

lim
x→∞

f(x) = L or lim
x→−∞

f(x) = L, or both.

Example 2.5.1 Compute the following limits:

(i) lim
x→∞

sinx

x
(ii) lim

x→∞

cosx

x

(iii) lim
x→∞

x2 + 1

3x3 + 10
(iv) lim

x→−∞

x3 − 2

3x3 + 2x− 3

(v) lim
x→−∞

3x3 + 4x− 7

2x2 + 5x+ 2
(vi) lim

x→−∞

−x4 + 3x− 10

2x2 + 3x− 5

(i) We observe that −1 ≤ sinx ≤ 1 and hence

0 = lim
x→∞

−1

x
≤ lim

x→∞

sinx

x
≤ lim

x→∞

1

x
= 0.

Hence, y = 0 is the horizontal asymptote and

lim
x→∞

sinx

x
= 0.

(ii) −1 ≤ cosx ≤ 1 and, by a similar argument as in part (i),

lim
x→∞

cosx

x
= 0.

(iii) We divide the numerator and denominator by x2 and then take the limit
as follows:

lim
x→∞

x2 + 1

3x3 + 10
= lim

x→∞

1 + 1/x2

3x+ 10/x2
= 0.
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(iv) We divide the numerator and denominator by x3 and then take the limit
as follows:

lim
x→−∞

x3 − 2

3x3 + 2x− 3
= lim

x→−∞

1− 2/x3

3 + 2/x2 − 3/x3
=

1

3
.

(v) We divide the numerator and denominator by x2 and then take the limit
as follows:

lim
x→−∞

3x3 + 4x− 7

2x2 + 5x− 2
= lim

x→−∞

3x+ 4/x− 7/x2

2 + 5/x+ 2/x2
= −∞.

(vi) We divide the numerator and denominator by x2 and then take the limit
as follows:

lim
x→−∞

−x4 + 3x− 10

2x2 + 3x− 5
= lim

x→−∞

−x2 + 3/x− 10/x2

2 + 3/x− 5/x2
= −∞.

Example 2.5.2

(i) lim
n→∞

(−1)n + 1

n
= 0

(ii) lim
n→∞

{
n2

n+ 3
− n2

n+ 4

}
= lim

n→∞

n3 + 4n2 − n3 − 3n2

n2 + 7n+ 12

= lim
n→∞

n2

n2 + 7n+ 12

= lim
n→∞

1

1 + 7/n+ 12/n2

= 1

(iii) lim
n→∞

(
√
n+ 4− n) = lim

n→∞

(
√
n+ 4−

√
n)(
√
n+ 4 +

√
n)

(
√
n+ 4 +

√
n)

= lim
n→∞

4

(
√
n+ 4 +

√
n)

= 0
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(vi) lim
n→∞

{
n2

1 + n2
sin
(nπ

2

)}
does not exist because it oscillates:

sin
(nπ

2

)
=


0 if n = 2m
1 if n = 2m+ 1
−1 if n = 2m+ 3

(v) lim
n→∞

3n

4 + 3n
= lim

h→∞

1

4 · e−n + 1
= 1

(vi) lim
n→∞
{cos(nπ)} = lim

n→∞
(−1)n does not exist.

Exercises 2.5 Evaluate the following limits:

1. lim
x→2

x

x2 − 4
2. lim

x→2+

x

x2 − 4

3. lim
x→1−

x

x2 − 1
4. lim

x→π
2
−

tan(x)

5. lim
x→π

2
+

sec x 6. lim
x→0+

cotx

7. lim
x→0−

csc x 8. lim
x→∞

3x2 − 7x+ 5

4x2 + 5x− 7

9. lim
x→−∞

x2 + 4

4x3 + 3x− 5
10. lim

x→∞

−x4 + 2x− 1

x2 + 3x+ 2

11. lim
x→∞

cos(nπ)

n2
12. lim

x→∞

1 + (−1)n

n3

13. lim
x→∞

sin(n)

n
14. lim

x→∞

1− cosn

n

15. lim
x→∞

cos
(
nπ
2

)
n

16. lim
x→∞

tan
(nπ
n

)



Chapter 3

Differentiation

In Definition 2.2.2, we defined the slope function of a function f at c by

slope(f(x), c) = lim
x→c

f(x)− f(c)

x− c

= lim
h→0

f(c+ h)− f(c)

h
.

The slope (f(x), c) is called the derivative of f at c and is denoted f ′(c).
Thus,

f ′(c) = lim
h→0

f(c+ h)− f(c)

h
.

Link to another file.

3.1 The Derivative

Definition 3.1.1 Let f be defined on a closed interval [a, b] and a < x < b.
Then the derivative of f at x, denoted f ′(x), is defined by

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

whenever the limit exists. When f ′(x) exists, we say that f is differentiable
at x. At the end points a and b, we define one-sided derivatives as follows:

(i) f ′(a+) = lim
x→a+

f(x)− f(a)

x− a
= lim

h→0+

f(a+ h)− f(a)

h
.

99
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We call f ′(a+) the right-hand derivative of f at a.

(ii) f ′(b−) = lim
x→b−

f(x)− f(b)

x− b
= lim

h→0−

f(b+ h)− f(b)

h
.

We call f ′(b) the left-hand derivative of f at b.

Example 3.1.1 In Example 28 of Section 2.2, we proved that if f(x) = sinx,
then f ′(c) = slope (sinx, c) = cos c. Thus, f ′(x) = cosx if f(x) = sinx.

Example 3.1.2 In Example 29 of Section 2.2, we proved that if f(x) =
cosx, then f ′(c) = − sin c. Thus, f ′(x) = − sinx if f(x) = cosx.

Example 3.1.3 In Example 30 of Section 2.2, we proved that if f(x) = xn

for a natural number n, then f ′(c) = ncn−1. Thus f ′(x) = nxn−1, when
f(x) = xn, for any natural number n.

In order to find derivatives of functions obtained from the basic elemen-
tary functions using the operations of addition, subtraction, multiplication
and division, we state and prove the following theorem.

Theorem 3.1.1 If f is differentiable at c, then f is continuous at c. The
converse is false.

Proof. Suppose that f is differentiable at c. Then

lim
x→c

f(x)− f(c)

x− c
= f ′(c)

and f ′(c) is a real number. So,

lim
x→c

f(x) = lim
x→c

[(
f(x)− f(c)

x− c

)
(x− c) + f(c)

]
= lim

x→0

f(x)− f(c)

x− c
· lim
x→c

(x− c) + f(c)

= f ′(c) · 0 + f(c)

= f(c).
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Therefore, if f is differentiable at c, then f is continuous at c.

To prove that the converse is false we consider the function f(x) = |x|.
This function is continuous at x = 0. But

f ′(x) = lim
h→0

[
|x+ h| − |x|

h

]
= lim

h→0

(|x+ h| − |x|)(|x+ h|+ |x|)
h(|x+ h|+ |x|)

= lim
h→0

x2 + 2xh+ h2 − x2

h(|x+ h|+ |x|)

= lim
h→0

2x+ h

|x+ h| |x|
=

x

|x|

=


1 for x > 0

−1 for x < 0

undefined for x = 0.

Thus, |x| is continuous at 0 but not differentiable at 0. This completes the
proof of Theorem 3.1.1.

Theorem 3.1.2 Suppose that functions f and g are defined on some open
interval (a, b) and f ′(x) and g′(x) exist at each point x in (a, b). Then

(i) (f + g)′(x) = f ′(x) + g′(x) (The Sum Rule)

(ii) (f − g)′(x) = f ′(x)− g′(x) (The Difference Rule)

(iii) (kf)′(x) = kf ′(x), for each constant k. (The Multiple Rule)

(iv) (f · g)′(x) = f ′(x) · g(x) + f(x) · g′(x) (The Product Rule)

(v)

(
f

g

)′
(x) =

g(x)f ′(x)− f(x)g′(x)

(g(x))2
, if g(x) 6= 0. (The Quotient Rule)

Proof.
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Part (i) (f + g)′(x) = lim
h→0

[f(x+ h) + g(x+ h)]− [f(x) + g(x)]

h

= lim
h→0

f(x+ h)− f(x)

h
+ lim

h→0

g(x+ h)− g(x)

h

= f ′(x) + g′(x).

Part (ii) (f − g)′(x) = lim
h→0

[f(x+ h)− g(x+ h)]− [f(x)− g(x)]

h

= lim
h→0

f(x+ h)− f(x)

h
− lim

h→0

g(x+ h)− g(x)

h
= f ′(x)− g′(x).

Part (iii) (kf)′(x) = lim
h→0

kf(x+ h)− kf(x)

h

= k · lim
h→0

f(x+ h)− f(x)

h

= kf ′(x).

Part (iv)

(f · g)′(x) = lim
h→0

f(x+ h)g(x+ h)− f(x)g(x)

h

= lim
h→0

1

h
[(f(x+ h)− f(x))g(x+ h) + f(x)(g(x+ h)− g(x))]

= lim
h→0

f(x+ h)− f(x)

h
· lim
h→0

g(x+ h) + f(x) lim
h→0

g(x+ h)− g(x)

h
= f ′(x)g(x) + f(x)g′(x).
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Part (v)

(
f

g

)′
(x) = lim

h→0

1

h

[
f(x+ h)

g(x+ h)
− f(x)

g(x)

]

= lim
h→0

1

h

[
f(x+ h) · g(x)− g(x+ h)f(x)

g(x+ h)g(x)

]

=
1

(g(x))2
lim
h→0

[
(f(x+ h)− f(x))

h
g(x)− f(x)

(g(x+ h)− g(x))

h

]

=
1

(g(x))2
· [f ′(x)g(x)− f(x)g′(x)]

=
g(x)f ′(x)− g(x)g′(x)

(g(x))2
, if g(x) 6= 0.

To emphasize the fact that the derivatives are taken with respect to the
independent variable x, we use the following notation, as is customary:

f ′(x) =
d

dx
(f(x)).

Based on Theorem 3.1.2 and the definition of the derivative, we get the
following theorem.

Theorem 3.1.3

(i)
d(k)

dx
= 0, where k is a real constant.

(ii)
d

dx
(xn) = nxn−1, for each real number x and natural number n.

(iii)
d

dx
(sinx) = cosx, for all real numbers (radian measure) x.

(iv)
d

dx
(cosx) = − sinx, for all real numbers (radian measure) x.

(v)
d

dx
(tanx) = sec2 x, for all real numbers x 6= (2n+ 1)

π

2
, n = integer.
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(vi)
d

dx
(cotx) = − csc2 x, for all real numbers x 6= nπ, n = integer.

(vii)
d

dx
(secx) = secx tanx, for all real numbers x 6= (2n+1)

π

2
, n = integer.

(viii)
d

dx
(cscx) = − csc x cotx, for all real numbers x 6= nπ, n = integer.

Proof.

Part(i)
d(k)

dx
(k) = lim

h→0

k − k
h

= lim
h→0

0

h

= 0.

Part (ii) For each natural n, we get

d

dx
(xn) = lim

h→0

(x+ h)n − xn

h
(Binomial Expansion)

= lim
h→0

1

h

[
xn + nxn−1h+

n(n− 1)

2!
xn−2h2 + · · ·+ hn − xn

]
= lim

h→0

[
nxn−1 +

n(n− 1)

2!
xn−2h+ · · ·+ hn−1

]
= nxn−1.

Part (iii) By definition, we get

d

dx
(sinx) = lim

h→0

sin(x+ h)− sinx

h

= lim
h→0

sinx cosh+ cosx sinh− sinx

h

= lim
h→0

[
cosx

sinh

h
− sinx

(
1− cosh

h

)]
= cosx · 1− sinx · 0
= cosx
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since

lim
h→0

sinh

h
= 1, lim

h→0

1− cosh

h
= 0. (Why?)

Part (iv) By definition, we get

d

dx
(cosx) = lim

h→0

cos(x+ h)− cosx

h

= lim
h→0

1

h
[cosx cosh− sinx sinh− cosx]

= lim
h→0

[
− sinx · sinh

h
− cosx

(
1− cosh

h

)]
= − sinx · 1− cosx · 0 (Why?)

= − sinx.

Part (v) Using the quotient rule and parts (iii) and (iv), we get

d

dx
(tanx) =

d

dx

(
sinx

cosx

)
=

cosx(sinx)′ − sinx(cosx)′

(cosx)2

=
cos2 x+ sin2 x

cos2 x

=
1

cos2 x
(Why?)

= sec2 x, x 6= (2n+ 1)
π

2
, n = integer.
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Part (vi) Using the quotient rule and Parts (iii) and (iv), we get

d

dx
(cotx) =

d

dx

(cosx

sinx

)
=

(sinx)(cosx)′ − (cosx)(sinx)′

(sinx)2

=
− sin2 x− cos2 x

(sinx)2
(Why?)

=
−1

(sinx)2
(why?)

= − csc2 x, x 6= nπ, n = integer.

Part (vii) Using the quotient rule and Parts (iii) and (iv), we get

d

dx
(secx) =

d

dx

(
1

cosx

)
=

(cosx) · 0− 1 · (cosx)′

(cosx)2

=
1

cosx
· sinx

cosx
(Why?)

= secx tanx, x 6= (2n+ 1)
π

2
, n = integer.

Part (viii) Using the quotient rule and Parts (iii) and (iv), we get

d

dx
(cscx) =

d

dx

(
1

sinx

)
=

sinx · 0− 1 · (sinx)′

(sinx)2

=
1

sinx
· − cosx

sinx
(Why?)

= − csc x cotx, x 6= nπ, n = integer.

This concludes the proof of Theorem 3.1.3.
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Example 3.1.4 Compute the following derivatives:

(i)
d

dx
(4x3 − 3x2 + 2x+ 10) (ii)

d

dx
(4 sinx− 3 cosx)

(iii)
d

dx
(x sinx+ x2 cosx) (iv)

d

dx

(
x3 + 1

x2 + 4

)

Part (i) Using the sum, difference and constant multiple rules, we get

d

dx
(4x3 − 3x2 + 2x+ 10) = 4

d

dx
(x3)− 3

d

dx
(x2) + 2

d

dx
+ 0

= 12x2 − 6x+ 2.

Part (ii)
d

dx
(4 sinx− 3 cosx) = 4

d

dx
(sinx)− 3

d

dx
(cosx)

= 4 cosx− 3(− sinx)

= 4 cosx+ 3 sinx.

Part (iii) Using the sum and product rules, we get

d

dx
(x sinx+ x2 cosx) =

d

dx
(x sinx) +

d

dx
(x2 cosx) (Sum Rule)

=

[
d

dx
sinx+ x

d

dx
(sinx)

]
+

[
d

dx
(x2) cosx+ x2 d

dx
(cosx)

]
= 1 · sinx+ x cosx+ 2x cosx+ x2(− sinx)

= sinx+ 3x cosx− x2 sinx.
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Part (iv). Using the sum and quotient rules, we get

d

dx

(
x3 + 1

x2 + 4

)
=

(x2 + 4) d
dx

(x3 + 1)− (x3 + 1) d
dx

(x2 + 4)

(x2 + 4)2
(Why?)

=
(x2 + 4)(3x2)− (x3 + 1) = x

(x2 + 4)2
(Why?)

=
3x4 + 12x2 − 2x3 − 2x

(x2 + 4)2
(Why?)

=
3x4 − 2x3 + 12x2 − 2x

(x2 + 4)2
.

Exercises 3.1

1. From the definition, prove that
d

dx
(x3) = 3x2.

2. From the definition, prove that
d

dx

(
1

x

)
=
−1

x2
.

Compute the following derivatives:

3.
d

dx
(x5 − 4x2 + 7x− 2) 4.

d

dx
(4 sinx+ 2 cosx− 3 tanx)

5.
d

dx

(
2x+ 1

x2 + 1

)
6.

d

dx

(
x4 + 2

3x+ 1

)

7.
d

dx
(3x sinx+ 4x2 cosx) 8.

d

dx
(4 tanx− 3 secx)

9.
d

dx
(3 cotx+ 5 cscx) 10.

d

dx
(x2 tanx+ x cotx)

Recall that the equation of the line tangent to the graph of f at (c, f(c)) has
slope f ′(c) and equations.

Tangent Line: y − f(c) = f ′(c)(x− c)

The normal line has slope −1/f ′(c), if f ′(c) 6= 0 and has the equation:
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Normal Line: y − f(c) =
−1

f ′(c)
(x− c).

In each of the following, find the equation of the tangent line and the equation
of the normal line for the graph of f at the given c.

11. f(x) = x3 + 4x− 12, c = 1 12. f(x) = sinx, c = π/6

13. f(x) = cosx, c = π/3 14. f(x) = tanx, c = π/4

15. f(x) = cotx, c = π/4 16. f(x) = secx, c = π/3

17. f(x) = cscx, c = π/6 18. f(x) = 3 sinx+ 4 cosx, c = 0.

Recall that Newton’s Method solves f(x) = 0 for x by using the fixed point
iteration algorithm:

xn+1 = g(xn) = xn −
f(xn)

f ′(xn)
, x0 = given,

with the stopping rule, for a given natural number n,

|xn+1 − xn| < 10−n.

In each of the following, set up Newton’s Iteration and perform 3 calculations
for a given x0.

19. f(x) = 2x− cosx , x0 = 0.5

20. f(x) = x3 + 2x+ 1 , x0 = −0.5

21. f(x) = x3 + 3x2 − 1 = 0, x0 = 0.5

22. Suppose that f ′(c) exists. Compute each of the following limits in terms
of f ′(c)

(a) lim
x→c

f(x)− f(c)

x− c
(b) lim

h→0

f(c+ h)− f(c)

h

(c) lim
h→0

f(c− h)− f(c)

h
(d) lim

t→c

f(c)− f(t)

t− c

(e) lim
h→0

f(c+ h)− f(c− h)

2h
(f) lim

h→0

f(c+ 2h)− f(c− 2h)

h
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23. Suppose that g is differentiable at c and

f(t) =

{
g(t)−g(c)
t−c if t 6= c

g′(c) if t = c.

Show that f is continuous at c.

Suppose that a business produces and markets x units of a commercial
item. Let

C(x) = The total cost of producing x-units.

p(x) = The sale price per item when x-units are on the market.

R(x) = xp(x) = The revenue for selling x-units.

P (x) = R(x)− C(x) = The gross profit for selling x-items.

C ′(x) = The marginal cost.

R′(x) = The marginal revenue.

P ′(x) = The marginal profit.

In each of the problems 24–26, use the given functions C(x) and p(x) and
compute the revenue, profit, marginal cost, marginal revenue and marginal
profit.

24. C(x) = 100x− (0.2)x2, 0 ≤ x ≤ 5000, p(x) = 10− x

25. C(x) = 5000 +
2

x
, 1 ≤ x ≤ 5000, p(x) = 20 +

1

x

26. C(x) = 1000 + 4x− 0.1x2, 1 ≤ x ≤ 2000, p(x) = 10− 1

x

In exercises 27–60, compute the derivative of the given function.

27. f(x) = 4x3 − 2x2 + 3x− 10 28. f(x) = 2 sinx− 3 cosx+ 4

29. f(x) = 3 tanx− 4 secx 30. f(x) = 2 cotx+ 3 cscx

31. f(x) = 2x2 + 4x+ 5 32. f(x) = x2/3 − 4x1/3 + 5

33. f(x) = 3x−4/3 + 3x−2/3 + 10 34. f(x) = 2
√
x+ 4
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35. f(x) =
2

x2
36. f(x) =

4

x3
− 3

x2
+

2

x
+ 1

37. f(x) = x4 − 4x2 38. f(x) = (x2 + 2)(x2 + 1)

39. f(x) = (x+ 2)(x− 4) 40. f(x) = (x3 + 1)(x3 − 1)

41. y = (x2 + 1) sinx 42. y = x2 cosx

43. y = (x2 + 1)(x10 − 5) 44. y = x2 tanx

45. y = (x1/2 + 4)(x1/3 − 5) 46. y = (2x+ sinx)(x2 + 4)

47. y = x5 sinx 48. y = x4(2 sinx− 3 cosx)

49. y = x2 cotx− 2x+ 5 50. y = (x+ sinx)(4 + cscx)

51. y = (secx+ tanx)(sinx+ cosx) 52. y = x2(2 cotx− 3 cscx)

53. y =
x2 + 1

x2 + 4
54. y =

1 + sinx

1 + cosx

55. y =
x1/2 + 1

3x3/2 + 2
56. y =

sinx− cosx

sinx+ cosx

57. y =
t2 + 3t+ 2

t3 + 1
58. y =

x2ex

1 + ex

59. y =
3 + sin t cos t

4 + sec t tan t
60. y =

t2 sin t

4 + t2

3.2 The Chain Rule

Suppose we have two functions, u and y, related by the equations:

u = g(x) and y = f(u).
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Then y = (f ◦ g)(x) = f(g(x)).
The chain rule deals with the derivative of the composition and may be

stated as the following theorem:

Theorem 3.2.1 (The Chain Rule). Suppose that g is defined in an open
interval I containing c, and f is defined in an open interval J containing
g(c), such that g(x) is in J for all x in I. If g is differentiable at c, and f is
differentiable at g(c), then the composition (f ◦ g) is differentiable at c and

(f ◦ g)′(c) = f ′(g(c)) · g′(c).

In general, if u = g(x) and y = f(u), then

dy

dx
=
dy

du
· du
dx.

Proof. Let F be defined on J such that

F (u) =

{
f(u)−f(g(c))

u−g(c) if u 6= g(c)

f ′(g(c)) if u = g(c)

since f is differentiable at g(c),

lim
u→g(c)

F (u) = lim
u→g(c)

f(u)− f(g(c))

u− g(c)

= f ′(g(c))

= F (g(c)).

Therefore, F is continuous at g(c). By the definition of F ,

f(u)− f(g(c)) = F (u)(u− g(c))

for all u in J . For each x in I, we let y = g(x) on I. Then

(f ◦ g)′(c) = lim
x→c

(f ◦ g)(x)− (f ◦ g)(c)

x− c

= lim
x→c

f(g(x))− f(g(c))

g(x)− g(c)
· g(x)− g(c)

x− c

= lim
u→g(c)

F (u) · lim
x→c

g(x)− g(c)

x− c
= f ′(g(c)) · g′(c).
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It follows that f ◦g is differentiable at c. The general result follows by replac-
ing c by the independent variable x. This completes the proof of Theorem
3.2.1.

Example 3.2.1 Let y = u2 + 1 and u = x3 + 4. Then

dy

du
= 2u and

du

dx
= 3x2.

Therefore,

dy

dx
=
dy

du
· du
dx

= 2u · 3x2

= 6x2(x3 + 4) .

Using the composition notation, we get

y = (x3 + 4)2 + 1 = x6 + 8x3 + 17

and

dy

dx
= 6x5 + 24x2

= 6x2(x3 + 4) .

Using
(f ◦ g)′(x) = f ′(g(x)) · g′(x),

we see that
(f ◦ g)(x) = (x3 + 4)2 + 1

and

(f ◦ g)′(x) = f ′(g(x)) · g′(x)

= 2(x3 + 4)1 · (3x2)

= 6x2(x3 + 4) .
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Example 3.2.2 Suppose that y = sin(x2 + 3).
We let u = x2 + 3, and y = sinu. Then

dy

dx
=
dy

du
· du
dx

= (cosu)(2x)

= (cos(x2 + 3)) · (2x).

Example 3.2.3 Suppose that y = w2, w = sinu + 3, and u = (4x + 1).
Then

dy

dx
=
dy

dw
· dw
du
· du
dx

= (2w) · (cosu) · 4
= 8w cosu

= 8[sin(4x+ 1) + 3] · cos(4x+ 1) · 4
= 8(sin(4x+ 1) + 3) · cos(4x+ 1).

If we express y in terms of x explicitly, then we get

y = (sin(4x+ 1) + 3)2

and

dy

dx
= 2(sin(4x+ 1) + 3)1 · ((cos(4x+ 1)) · 4 + 0)

= 8(sin(4x+ 1) + 3) cos(4x+ 1).

Example 3.2.4 Suppose that y = (cos(3x+ 1))5. Then

dy

dx
= 5(cos(3x+ 1))4 · (− sin(3x+ 1)) · 3

= −15(cos(3x+ 1))4 sin(3x+ 1).
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Example 3.2.5 Suppose that y = tan3(2x2 + 1). Then

dy

dx
= 3(tan2(2x2 + 1)) · (sec2(2x2 + 1)) · 4x

= 12x · tan2(2x2 + 1) · sec2(2x2 + 1).

Example 3.2.6 Suppose that y = cot

(
x+ 1

x2 + 1

)
. Then

dy

dx
=

[
− csc2

(
x+ 1

x2 + 1

)] [
(x2 + 1) · 1− (x+ 1)2x

(x2 + 1) · 2x

]
=
x2 + 2x− 1

(x2 + 1)2
csc2

(
x+ 1

x2 + 1

)
.

Example 3.2.7 Suppose that y = sec

(
x2 + 1

x4 + 2

)3

.

Since the function y has a composition of several functions, let us define
some intermediate functions. Let

y = secw, w = u3, and u =
x2 + 1

x4 + 2
.

Then

dy

dx
=
dy

dw
· dw
du
· du
dx

= [sec(w) tan(w)] · [3u2] · (x4 + 2) · 2x− (x2 + 1) · 4x3

(x4 + 2)2

= 3u2(secw tanw) · 4x− 4x3 − 2x5

(x4 + 2)2

= 3

(
x2 + 1

x4 + 2

)2

sec

(
x2 + 1

x4 + 2

)3

tan

(
x2 + 1

x4 + 2

)3

· 4x− 4x3 − 2x5

(x4 + 2)5
.
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Example 3.2.8 Suppose that y = csc(2x+ 5)4. Then

dy

dx
= [− csc(2x+ 5)4 cot(2x+ 5)4] · 4(2x+ 5)3 · 2

= −8(2x+ 5)3 csc(2x+ 5)4 cot(2x+ 5)4.

Exercises 3.2 Evaluate
dy

dx
for each of the following:

1. y = (2x− 5)10 2. y =

(
x2 + 2

x5 + 4

)3

3. y = sin(3x+ 5) 4. y = cos(x3 + 1)

5. y = tan5(3x+ 1) 6. y = sec2(x2 + 1)

7. y = cot4(2x− 4) 8. y = csc3(3x2 + 2)

9. y =

(
3x+ 1

x2 + 2

)5

10. y =

(
x2 + 1

x3 + 2

)4

11. y = sin(w), w = u3, u = (2x− 1)

12. y = cos(w), w = u2 + 1, u = (3x+ 5)

13. y = tan(w), w = v2, v = u3 + 1, u =

(
1

x

)

14. y = secw, w = v3, v = 2u2 − 1, u =
x

x2 + 1

15. y = cscw, w = 3v + 2, v = (u+ 1)3, u = (x2 + 3)2

In exercises 16–30, compute the derivative of the given function.

16. y =

(
x3 + 1

x2 + 4

)3

17. y = (x2 − 1)10
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18. y = (x2 + x+ 2)100 19. y = (2 sin t− 3 cos t)3

20. y = (x2/3 + x4/3)2 21. y = (x1/2 + 1)50

22. y = sin(3x+ 2) 23. y = cos(3x2 + 1)

24. y = sin(2x) cos(3x) 25. y = sec 2x+ tan 3x

26. y = sec 2x tan 3x 27. y = (x2 + 1)2 sin 2x

28. y = x sin(1/x2) 29. y = sin2(3x) + sec2(5x)

30. y = cot(x2) + csc(3x)

In exercises 31–60, assume that

(a)
d

dx
(ex) = ex (b)

d

dx
(e−x) = −e−x (c)

d

dx
(lnx) =

1

x

(d)
d

dx
(bx) = bx ln b (e)

d

dx
(logb x) =

1

x ln b
for b > 0 and b 6= 1.

Compute the derivative of the given function.

31. y = sinhx 32. y = coshx

33. y = tanhx 34. y = cothx

35. y = sechx 36. y = cschx

37. y = ln(1 + x) 38. y = ln(1− x)

39. y =
1

2
ln

(
1− x
1 + x

)
40. y = ln

(
x+
√
x2 + 1

)
41. y = ln

(
x+
√
x2 − 1

)
42. y = xe−x

2

43. y = esin 3x 44. y = e2x sin 4x
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45. y = ex
2
(2 sin 3x− 4 cos 5x) 46. y = xe−x

2
+ 4e−x

47. y = 4x
2

48. y = 10(x2+4)

49. y = 10sin 2x 50. y = 3cos 3x

51. y = log10(x2 + 10) 52. y = log3(x2 sinx+ x)

53. y = ln(sin(e2x)) 54. y = ln(1 + e−x)

55. y = ln(cosx+ 2) 56. y = ln(ln(x2 + 4))

57. y =

{
ln

(
x4 + 3

x2 + 10

)}3

58. y = (1 + sin2 x)3/2

59. y = ln(sec 2x+ tan 2x) 60. y = ln(csc 3x− cot 3x)

3.3 Differentiation of Inverse Functions

One of the applications of the chain rule is to compute the derivatives of
inverse functions. We state the exact result as the following theorem:

Theorem 3.3.1 Suppose that a function f has an inverse, f−1, on an open
interval I. If u = f−1(x), then

(i)
du

dx
=

1(
dx
du

)
(ii) (f−1)′(x) =

1

f ′(f−1(x))
=

1

f ′(u)

Proof. By comparison, x = f(f−1(x)) = x. Hence, by the chain rule

1 =
dx

dx
= f ′(f−1(x)) · (f−1)′(x)
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and

(f−1)′(x) =
1

f ′(f−1(x))
.

In the u = f−1(x) notation, we have

du

dx
=

1(
dx
du

) .
Remark 11 In Examples 76–81, we assume that the inverse trigonometric
functions are differentiable.

Example 3.3.1 Let u = arcsinx, −1 ≤ x ≤ 1, and −π
2
≤ u ≤ π

2
. Then

x = sinu and by the chain rule, we get

1 =
dx

dx
=
d(sinu)

du
· du
dx

= cosu · du
dx

du

dx
=

1

cosu
.

Therefore,

d

dx
(arcsinx) =

1

cosu
, −π

2
< u <

π

2
,

=
1√

1− sin2 u
(Why?)

=
1√

1− x2
, −1 < x < 1. (Why?)

Thus,
d

dx
(arcsinx) =

1√
1− x2

, −1 < x < 1.

We note that x = ±1 are excluded.
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Example 3.3.2 Let u = arccosx, −1 ≤ x ≤ 1, and 0 ≤ u ≤ π. Then
x = cosu and

1 =
dx

dx
= − sinu

du

dx
du

dx
= − 1

sinu
, 0 < u < π

= − 1√
1− cos2 u

, 0 < u < π (Why?)

= − 1√
1− x2

, −1 < x < 1. (Why?)

We note again that x = ±1 are excluded.
Thus,

d

dx
(arccosx) =

−1√
1− x2

, −1 < x < 1.

Example 3.3.3 Let u = arctanx, −∞ < x <∞, and −π
2
< u <

π

2
. Then,

x = tanu, −π
2
< u <

π

2

1 =
dx

dx
= (sec2 u),

du

dx
, −π

2
< u <

π

2
du

dx
=

1

sec2 u

=
1

1 + tan2 u
, −π

2
< u <

π

2

=
1

1 + x2
, −∞ < x <∞

Therefore,
d

dx
(arctanx) =

1

1 + x2
, −∞ < x <∞.
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Example 3.3.4 Let u = arcsec x, x ∈ (−∞,−1] ∪ [1,∞) and

u ∈
[
0,
π

2

)
∪
(π

2
, π
]
. Then,

x = secu

1 =
dx

dx
= secu tanu · du

dx
, u ∈

[
0,
π

2

)
∪
(π

2
, π
]

du

dx
=

1

secu tanu
, u ∈

(
0,
π

2

)
∪
(π

2
, π
)

=
1

| secu|
√

sec2 u− 1
(Why the absolute value?)

=
1

|x|
√
x2 − 1

, x ∈ (−∞,−1) ∪ (1,∞).

Thus,
d

dx
(arcsecx) =

1

|x|
√
x2 − 1

, x ∈ (−∞,−1) ∪ (1,∞).

Example 3.3.5 Let u = arccsc x, x ∈ (−∞,−1] ∪ [1,∞), and

u ∈
[
−π

2
, 0
)
∪
(

0,
π

2

]
. Then,

x = cscu , u ∈
[
−π

2
, 0
)
∪
(

0,
π

2

]
1 =

dx

dx
= − cscu cotu · du

dx
, u ∈

[
−π

2
, 0
)
∪
(

0,
π

2

]
du

dx
=

−1

cscu cotu
, u ∈

(
−π
2
, 0

)
∪
(

0,
π

2

)
, (Why?)

=
1

| cscu|
√

csc2 u− 1
(Why?)

=
1

|x|
√
x2 − 1

, x ∈ (−∞,−1) ∪ (1,∞).

Note that x = ±1 are excluded.
Thus,

d

dx
(arccscx) =

−1

x
√
x2 − 1

, x ∈ (−∞, 1] ∪ (1,∞).
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Example 3.3.6 Let u = arccot x, x ∈ (−∞, 0] ∪ [0,∞) and

u ∈
(

0,
π

2

]
∪
[π

2
, π
)

. Then

x = cotu, u ∈
(

0,
π

2

]
∪
[π

2
, π
)

and

1 =
dx

dx
= − csc2(u) · du

dx
, u ∈

(
0,
π

2

]
∪
[π

2
, π
)

du

dx
=
−1

csc2 u
, u ∈

(
0,
π

2

]
∪
[π

2
, π
)

=
−1

1 + cot2 u
, u ∈

(
0,
π

2

]
∪
[π

2
, π
)

=
−1

1 + x2
, x ∈ (−∞, 0] ∪ [0,∞).

Therefore,

d

dx
(arccotx) =

−1

1 + x2
, x ∈ (−∞, 0] ∪ [0,∞).

The results of these examples are summarized in the following theorem:

Theorem 3.3.2 (The Inverse Trigonometric Functions) The following dif-
ferentiation formulas are valid for the inverse trigonometric functions:

(i)
d

dx
(arcsinx) =

1√
1− x2

, −1 < x < 1.

(ii)
d

dx
(arccosx) =

−1√
1− x2

, −1 < x < 1.

(iii)
d

dx
(arctanx) =

1

1 + x2
, −∞ < x <∞.

(iv)
d

dx
(arccot x) =

−1

1 + x2
, −∞ < x <∞.

(v)
d

dx
(arcsec x) =

1

|x|
√
x2 − 1

, −∞ < x < −1 or 1 < x <∞.
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(vi)
d

dx
(arccsc x) =

−1

|x|
√
x2 − 1

, −∞ < x < −1 or 1 < x <∞.

Proof. Proof of Theorem 3.3.2 is outlined in Examples 76–80.

Theorem 3.3.3 (Logarithmic and Exponential Functions)

(i)
d

dx
(lnx) =

1

x
for all x > 0.

(ii)
d

dx
(ex) = ex for all real x.

(iii)
d

dx
(logb x) =

1

x ln b
for all x > 0 and b 6= 1.

(iv)
d

dx
(bx) = bx(ln b) for all real x, b > 0 and b 6= 1.

(v)
d

dx
(u(x)v(x) = (u(x))v(x)

[
v′(x) ln(u(x)) + v(x)

u′(x)

u(x)

]
.

Proof. Proof of Theorem 3.3.3 is outlined in the proofs of Theorems 5.5.1–
5.5.5. We illustrate the proofs of parts (iii), (iv) and (v) here.

Part (iii) By definition for all x > 0, b > 0 and b 6= 1,

logb x =
lnx

ln b
.

Then,

d

dx
(logb x) =

d

dx

((
1

ln b

)
lnx

)
=

(
1

ln b

)
· 1

x

=
1

x ln b
.

Part (iv) By definition, for real x, b > 0 and b 6= 1,

bx = ex ln b.
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Therefore,

d

dx
(bx) =

d

dx
(ex ln b)

= ex ln b,
d

dx
(x ln b) (by the chain rule)

= bx ln b. (Why?)

Part (v)

d

dx
(u(x))v(x) =

d

dx

{
ev(x) ln(u(x))

}
= ev(x) ln(u(x))

{
v′(x) ln(u(x)) + v(x)

u′(x)

u(x)

}
= (u(x))v(x)

{
v′(x) lnu(x) + v(x)

u′(x)

u(x)

}

Example 3.3.7 Let y = log10(x2 + 1). Then

d

dx
(log10(x2 + 1)) =

d

dx

(
ln(x2 + 1)

ln 10

)
=

1

ln 10

(
1

x2 + 1
· 2x
)

(by the chain rule)

=
2x

(x2 + 1) ln 10
.

Example 3.3.8 Let y = ex
2+1. Then, by the chain rule, we get

dy

dx
= ex

2+1 · 2x

= 2xex
2+1.
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Example 3.3.9 Let y = 10(x3+2x+1). By definition and the chain rule, we
get

dy

dx
= 10(x3+2x+1) · (ln 10) · (3x2 + 2).

Example 3.3.10

dx

dx
(x2 + 1)sinx = (x2 + 1)sinx

{
cosx ln(x2 + 1) + sinx · 2x

x2 + 1

}
d

dx
(x2 + 1)sinx =

d

dx

[
esinx ln(x2+1)

]
= 3sinx ln(x2+1) ·

[
cosx ln(x2 + 1) + sinx · 2x

x2 + 1

]
= (x2 + 1)sinx

[
cosx ln(x2 + 1) +

2x sinx

x2 + 1

]
.

Theorem 3.3.4 (Differentiation of Hyperbolic Functions)

(i)
d

dx
(sinhx) = coshx (ii)

d

dx
(coshx) = sinhx

(iii)
d

dx
(tanhx) = sech2x (iv)

d

dx
(cothx) = −csch2x

(v)
d

dx
(sech x) = −sech x tanhx (vi)

d

dx
(csch x) = −csch x coth x.

Proof.

Part (i)

d

dx
(sinhx) =

d

dx

(
1

2
(ex − e−x)

)
=

1

2
(ex − e−x(−1)) (by the chain rule)

=
1

2
(ex + e−x)

= coshx.
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Part (ii)

d

dx
(coshx) =

d

dx

(
1

2
(ex + e−x)

)
=

1

2
(ex + e−x(−1)) (by the chain rule)

=
1

2
(ex − e−x)

= sinhx.

Part (iii)

d

dx
(tanhx) =

d

dx

(
ex − e−x

ex + e−x

)
=

(ex + e−x)(ex + e−x)− (ex − e−x)(ex − e−x)
(ex + e−x)2

=
4

(ex + e−x)2

=

(
2

ex + e−x

)2

= sech2x.

Part (iv)

d

dx
(sech x) =

d

dx

(
2

ex + e−x

)
=

(ex + e−x) · 0− 2(ex − e−x)
(ex + e−x)2

= − 2

ex + e−x
· e

x − e−x

ex + e−x

= −sechx tanhx.
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Part (v)

d

dx
(cothx) =

d

dx

(
ex + e−x

ex − e−x

)
, x 6= 0

=
(ex − e−x)(ex − e−x)− (ex + e−x)(ex + e−x)

(ex − e−x)2
x 6= 0

=
−4

(ex − e−x)2
, x 6= 0

= −
(

2

ex − e−x

)2

, x 6= 0

= −csch2x , x 6= 0.

Part (vi)

d

dx
(cschx) =

d

dx

(
2

ex − e−x

)
, x 6= 0

=
(ex − e−x) · 0− 2(ex + e−x)

(ex − e−x)2
, x 6= 0

= − 2

ex − e−x
· e

x + e−x

ex − e−x
, x 6= 0

= −cschx cothx, x 6= 0.

Theorem 3.3.5 (Inverse Hyperbolic Functions)

(i)
d

dx
(arcsinhx) =

1√
1 + x2

(ii)
d

dx
(arccoshx) =

1√
x2 − 1

, x > 1

(iii)
d

dx
(arctanhx) =

1

1− x2
, |x| < 1

Proof.
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Part (i)

d

dx
(arcsinhx) =

d

dx
ln(x+

√
1 + x2)

=
1

x+
√

1 + x2
·
[
1 +

x√
1 + x2

]
(by chain rule)

=
1

x+
√

1 + x2
·
√

1 + x2 + x√
1 + x2

=
1√

1 + x2
.

Part (ii)

d

dx
(arccoshx) =

d

dx
ln(x+

√
x2 − 1) , x ≥ 1

=
1

x+
√
x2 − 1

·
(

1 +
x√

x2 − 1

)
, x > 0

=
1

x+
√
x2 − 1

·
√
x2 − 1 + x√
x2 − 1

, x > 0

=
1√

x2 − 1
, x > 0.

Part (iii)

d

dx
(arctanhx) =

d

dx

[
1

2
ln

(
1 + x

1− x

)]
, |x| < 1

=
d

dx

[
1

2
ln(1 + x)− ln(1− x)

]
, |x| < 1

=
1

2

[
1

1 + x
− −1

1− x

]
, |x| < 1

=
1

2

[
1

1 + x
+

1

1− x

]
, |x| < 1

=
1

2

[
1− x+ 1 + x

1− x2

]
, |x| < 1

=
1

1− x2
, |x| < 1.
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Exercises 3.3 Compute
dy

dx
for each of the following:

1. y = ln(x2 + 1) 2. y = ln

(
1− x
1 + x

)
, −1 < x < 1

3. y = log2(x) 4. y = log5(x3 + 1)

5. y = log10(3x+ 1) 6. y = log10(x2 + 4)

7. y = 2e−x 8. y = ex
2

9. y =
1

2
(ex

2 − e−x2

) 10. y =
1

2
(ex

2

+ e−x
2

)

11. y =
ex

2 − e−x2

ex2 + e−x2 12. y =
2

ex2 + e−x2

13. y =
2

ex3 − e−x3 14. y =
2

ex4 + e−x4

15. y = arcsin
(x

2

)
16. y = arccos

(x
3

)
17. y = arctan

(x
5

)
18. y = arccot

(x
7

)
19. y = arcsec

(x
2

)
20. y = arccsc

(x
3

)
21. y = 3 sinh(2x) + 4 cosh 3x 22. y = ex(3 sin 2x+ 4 cos 2x)

23. y = e−x(4 sin 3x− 3 cos 3x) 24. y = 4 sinh 2x+ 3 cosh 2x

25. y = 3 tanh(2x)− 7 coth (2x) 26. y = 3 sech (5x) + 4 csch (3x)

27. y = 10x
2

28. y = 2(x3+1)

29. y = 5(x4+x2) 30. y = 3sinx
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31. y = 4cos(x2) 32. y = 10tan(x3)

33. y = 2cotx 34. y = 10sec(2x)

35. y = 4csc(x2) 36. y = e−x(2 sin(x2) + 3 cos(x3))

37. y = arcsinh
(x

2

)
38. y = arccosh

(x
3

)
39. y = arctan

(x
4

)
40. y = x arcsinh

(x
3

)
In exercises 41–50, use the following procedure to compute the derivative of
the given functions:

d

dx
[(f(x)g(x)] =

d

dx
[eg(x) ln(f(x))]

= eg(x) ln(f(x)) ·
[
g′(x) ln(f(x)) + g(x)

f ′(x)

f(x)

]

= (f(x))g(x) ·
[
g′(x) ln(f(x)) + g(x)

f ′(x)

f(x)

]
.

41. y = (x2 + 4)3x 42. y = (2 + sinx)cosx

43. y = (3 + cosx)sin 2x 44. y = (x2 + 4)x
2+1

45. y = (1 + x)1/x 46. y = (1 + x2)cos 3x

47. y = (2 sinx+ 3 cosx)x
3

48. y = (1 + lnx)1/x2

49. y = (1 + sinhx)coshx 50. y = (sinh2 x+ cosh2 x)x
2+3

3.4 Implicit Differentiation

So far we have dealt with explicit functions such as x2, sinx, cosx, lnx, ex, sinhx
and coshx etc. In applications, two variables can be related by an equation
such as
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(i) x2 +y2 = 16 (ii) x3 +y3 = 4xy (iii) x sin y+cos 3y = sin 2y.

In such cases, it is not always practical or desirable to solve for one variable
explicitly in terms of the other to compute derivatives. Instead, we may
implicitly assume that y is some function of x and differentiate each term of
the equation with respect to x. Then we solve for y′, noting any conditions
under which the derivative may or may not exist. This process is called
implicit differentiation. We illustrate it by examples.

Example 3.4.1 Find
dy

dx
if x2 + y2 = 16.

Assuming that y is to be considered as a function of x, we differentiate
each term of the equation with respect to x.

graph

d

dx
(x2) +

d

dx
(y2) =

d

dx
(16)

2x+ 2y

(
dy

dx

)
= 0 (Why?)

2y
dy

dx
= −2x

dy

dx
= −x

y
, provided y 6= 0.

We observe that there are two points, namely (4, 0) and (−4, 0) that satisfy
the equation. At each of these points, the tangent line is vertical and hence,
has no slope.

If we solve for y in terms of x, we get two solutions, each representing a
function of x:

y = (16− x2)1/2 or y = −(16− x2)1/2.
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On differentiating each function with respect to x, we get, respectively,

dy

dx
=

1

2
(16− x2)−1/2(−2x) ; or

dy

dx
= −1

2
(16− x2)−1/2(−2x)

dy

dx
= − x

(16− x2)1/2
; or

x

−(16− x2)1/2

dy

dx
= −x

y
, y 6= 0; or

dy

dx
= −x

y
, y 6= 0.

In each case, the final form is the same as obtained by implicit differentiation.

Example 3.4.2 Compute
dy

dx
for the equation x3 + y3 = 4xy.

As in Example 2.4.1, we differentiate each term with respect to x, assum-
ing that y is a function of x.

dy

dx
(x3) +

d

dx
(y3) =

d

dx
(4xy)

3x2 + 3y2

(
dy

dx

)
= 4

[
dx

dx
y + x

dy

dx

]
(Why?)

(3y2)
dy

dx
− 4x

dy

dx
= 4y − 3x2 (Why?)

(3y2 − 4x)
dy

dx
= 4y − 3x2 (Why?)

dy

dx
=

4y − 3x2

3y2 − 4x
, if 3y2 − 4x 6= 0. (Why?)

This differentiation formula is valid for all points (x, y) on the given curve,
where 3y2 − 4x 6= 0.

Example 3.4.3 Compute
dy

dx
for the equation x sin y + cos 3y = sin 2y. In

this example, it certainly is not desirable to solve for y explicitly in terms of
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x. We consider y to be a function of x, differentiate each term of the equation
with respect to x and then algebraically solve for y in terms of x and y.

d

dx
(x sin y) +

d

dx
(cos 3y) =

d

dx
(sin 2y)[(

dx

dx

)
(sin y) + x

d

dx
(sin y)

]
+ (−3 sin 3y)

dy

dx
= (cos 2y)

(
2
dy

dx

)
sin y + x(cos y)

dy

dx
− 3 sin(3y)

dy

dx
= (2 cos 2y)

dy

dx
.

Upon collecting all terms containing
dy

dx
on the left-side, we get

[x cos y − 3 sin 3y − 2 cos 2y]
dy

dx
= − sin y

dy

dx
= − sin y

x cos y − 3 sin 3y − 2 cos 2y

whenever
x cos y − 3 sin 3y − 2 cos 2y 6= 0.

Example 3.4.4 Find
dy

dx
for

(x− 2)2

9
+

(y − 3)2

16
= 1.

On differentiating each term with respect to x, we get

graph

d

dx

(
(x− 2)2

9

)
+

d

dx

(
(y − 3)2

16

)
=

d

dx
(1)

2

9
(x− 2) +

2

16
(y − 3)

dy

dx
= 0

dy

dx
= − 2(x− 2)/9

2(y − 3)/16
, if y 6= 3

= −16(x− 2)

9(y − 3)
, if y = 3.
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The tangent lines are vertical at (−1, 3) and (5, 3). The graph of this equation
is an ellipse.

Example 3.4.5 Find
dy

dx
for the astroid x2/3 + y2/3 = 16.

graph

d

dx
(x2/3) +

d

dx
(y2/3) = 0

2

3
x−1/3 +

2

3
y−1/3 dy

dx
= 0, if x 6= 0 and y 6= 0

dy

dx
= −y

−1/3

x−1/3
= −

(
x

y

)1/3

, if x 6= 0 and y 6= 0.

Example 3.4.6 Find
dy

dx
for the lemniscate with equation (x2 + y2)2 =

4(x2 − y2).

graph
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d

dx
((x2 + y2)2) = 4

d

dx
(x2 − y2)

2(x2 + y2)

(
2x+ 2y

dy

dx

)
= 4

[
2x− 2y

dy

dx

]
[4y(x2 + y2) + 8y]

dy

dx
= 8x− 4x(x2 + y2) (Why?)

dy

dx
=

8x− 4x(x2 + y2)

4y(x2 + y2) + 8y
, if 4y(x2 + y2) + 8y 6= 0, y 6= 0.

Example 3.4.7 Find the equations of the tangent and normal lines at (x0, y0)
to the graph of an ellipse of the form

(x− k)2

a2
+

(y − k)2

b2
= 1.

First, we find
dy

dx
by implicit differentiation as follows:

d

dx

(
(x− h)2

a2

)
+

d

dx

(
(y − k)2

b2

)
=

d

dx
(1)

2

a2
(x− h) +

2

b2
(y − k)

dy

dx
= 0

dy

dx
= − 2

a2
(x− h) · b2

2(y − k)
, if y 6= k

=
−b2

a2

(
x− h
y − k

)
, y 6= k.

It is clear that at (a + h, k) and (−a + h, k), the tangent lines are vertical
and have the equations

x = a+ h and x = −a+ h.

Let (x0, y0) be a point on the ellipse such that y0 6= k. Then the equation of
the line tangent to the ellipse at (x0, y0) is

y − y0 =
−b2

a2

(
x0 − h
y0 − k

)
(x− x0).
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We may express this in the form

(y − y0)(y0 − k)

b2
+

(x− x0)(x0 − h)

a2
= 0.

By rearranging some terms, we can simplify the equation in the following
traditional form:

(y − k) + (k − y0)

b2
· (y0 − k) +

(x− h) + (h− x0)

a2
(x0 − h) = 0

(y − k)(y0 − k)

b2
+

(x− h)(x0 − h)

a2
=

(x0 − h)2

a2
+

(y0 − k)2

b2
= 1.

(y − k)(y0 − k)

b2
+

(x− h)(x0 − h)

a2
= 1 .

Exercises 3.4 In each of the following, find
dy

dx
by implicit differentiation.

1. y2 + 3xy + 2x2 = 16 2. x3/4 + y3/4 = 103/4

3. x5 + 4x3y2 + 3y4 = 8 4. sin(x− y) = x2y cosx

5.
x2

4
− y2

9
= 1 6.

x2

16
+
y2

9
= 1

Find the equation of the line tangent to the graph of the given equation at
the given point.

7.
x2

9
+
y2

4
= 1 at

(
2,

2
√

5

3

)

8.
x2

9
− y2

4
= 1 at

(
3

2

√
5, 1

)

9. x2y2 = (y + 1)2(9− y2) at

(
3

2

√
5, 2

)
10. y2 = x3(4− x) at (2, 4)
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Two curves are said to be orthogonal at each point (x0, y0) of their intersection
if their tangent lines are perpendicular. Show that the following families of
curves are orthogonal.

11. x2 + y2 = r2, y +mx = 0

12. (x− h)2 + y2 = h2, x2 + (y − k)2 = k2

Compute y′ and y′′ in exercises 13–20.

13. 4x2 + 9y2 = 36 14. 4x2 − 9y2 = 36

15. x2/3 + y2/3 = 16 16. x3 + y3 = a3

17. x2 + 4xy + y2 = 6 18. sin(xy) = x2 + y2

19. x4 + 2x2y2 + 4y4 = 26 20. (x2 + y2)2 = x2 − y2

3.5 Higher Order Derivatives

If the vertical height y of an object is a function f of time t, then y′(t) is
called its velocity, denoted v(t). The derivative v′(t) is called the acceleration
of the object and is denoted a(t). That is,

y(t) = f(t), y′(t) = v(t), v′(t) = a(t).

We say that a(t) is the second derivative of y, with respect to t, and write

y′′(t) = a(t) or
d2y

dt2
= a(t).

Derivatives of order two or more are called higher derivatives and are repre-
sented by the following notation:

y′(x) =
dy

dx
, y′′(x) =

d2y

dx2
, y′′′(x) =

d3y

dx3
, . . . , y(n)(x) =

dny

dxn
.

The definition is given as follows by induction:

d2f

dx2
=

d

dx

(
df

dx

)
and

dnf

dxn
=

d

dx

(
dn−1f

dxn−1

)
, n = 2, 3, 4, · · · .
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A convenient notation is

f (n)(x) =
dnf

dxn

which is read as “the nth derivative of f with respect to x.”

Example 3.5.1 Compute the second derivative y′′ for each of the following
functions:

(i) y = sin(3x) (ii) y = cos(4x2) (iii) y = tan(3x)

(iv) y = cot(5x) (v) y = sec(2x) (vi) y = csc(x2)

Part (i) y′ = 3 cos(3x), y′′ = −9 sin(3x)

Part (ii) y′ = −8x sin(4x2), y′′ = −8[sin(4x2) + x · (8x) · cos(4x2)]

Part(iii) y′ = 3 sec2(3x), y′′ = 3[2 sec(3x) · sec(3x) tan(3x) · 3]

y′′ = 18 sec2(3x) tan(3x)

Part(iv) y′ = −5 csc2(5x), y′′ = −10 csc(5x)[(− csc 5x cot 5x) · 5]

y′′ = 50 csc2(5x) cot(5x)

Part(v) y′ = 2 sec(2x) tan(2x)

y′′ = 2[(2 sec(2x) tan(2x)) · tan(2x) + sec(2x) · (2 sec2(2x))]

y′′ = 4 sec(2x) tan2(2x) + 4 sec3(2x)

Part(vi) y′ = −2x csc(x2) cot(x2)

y′′ = −2[1 · csc(x2) cot(x2) + x(−2x csc(x2) cot(x2)) · cot(x2)



3.5. HIGHER ORDER DERIVATIVES 139

+ x csc(x2) · (−2x csc2(x2))]

= −2 csc(x2) cot(x2) + 4x2 csc(x2) cot2(x2) + 4x2 csc3(x2)

Example 3.5.2 Compute the second order derivative of each of the follow-
ing functions:

(i) y = sinh(3x) (ii) y = cosh(x2) (iii) y = tanh(2x)

(iv) y = coth(4x) (v) y = sech(5x) (vi) y = csch(10x)

Part (i) y′ = 3 cosh(3x), y′′ = 9 sinh(3x)

Part (ii) y′ = 2x sinh(x2), y′′ = 2 sinh(x2) + 2x(2x coshx2) or

y′′ = 2 sinh(x2) + 4x2 cosh(x2)

Part (iii) y′ = 2 sech2(2x), y′′ = 2 · (2 sech(2x) · (−sech(2x) tanh(2x) · 2)),

y′′ = −8 sech2(2x) tanh(2x)

Part (iv) y′ = −4 csch2(4x), y′′ = −4(2(csch(4x)) · (−csch(4x) coth(4x) · 4))

y′′ = 32 csch2(4x) coth(4x)

Part (v) y′ = −5 sech (5x) tanh(5x)

y′ = −5[−5 sech(5x) tanh(5x) · tanh(5x) + sech(5x) · sech2(5x) · 5]

y′ = 25 sech(5x) tanh2(5x)− 25 sech3(5x).

Part (vi) y′ = −10 csch(10x) coth(10x)

y′′ = −10[−10 csch(10x) coth(10x) · coth(10x)
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+ csch(10x)(−10 csch2(10x))]

y′′ = 100 csch(10x) coth2(10x) + 100 csch3(10x)

Example 3.5.3 Compute the second order derivatives for the following func-
tions:

(i) y = ln(x2) (ii) y = ex
2

(iii) log10(x2 + 1)

(iv) y = 10x
2

(v) y = arcsinx (vi) y = arctanx

Part (i) y′ =
2x

x2
=

2

x
= 2x−1

y′′ = −2x−2 =
−2

x2
.

Part (ii) y′ = 2xex
2
, y′′ = 2ex

2
+ 4x2ex

2
= (2 + 4x2)ex

2
.

Part (iii) y′ =
1

ln 10
· 2x

x2 + 1
, y′′ =

2

ln 10

[
(x2 + 1) · 1− x · 2x

(x2 + 1)2

]
,

y′′ =
2

ln 10
·
[

1− x2

(x2 + 1)2

]
Part (iv) y′ = 10x

2 · (ln 10) · 2x

y′′ = 2 ln 10[10x
2

+ x · 10x
2

ln 10 · 2x]

y′′ = 10x
2
[2 ln 10 + (2 ln 10)2x2]

Part (v) y′ =
1√

1− x2
= (1− x2)−1/2
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y′′ =
−1

2
(1− x2)−3/2(−2x)

y′′ =
x

(1− x2)3/2
.

Part (vi) y′ =
1

1 + x2
= (1 + x2)−1

y′′ = −1(1 + x2)−2 · 2x =
−2x

(1 + x2)2

Example 3.5.4 Compute the second derivatives of the following functions:

(i) y = arcsinhx (ii) y = arccoshx (iii) y = arctanhx

From Section 1.4, we recall that

arcsinh x = ln(x+
√

1 + x2)

arccosh x = ln(x+
√
x2 − 1) , x ≥ 1

arctanh x =
1

2
ln

(
1 + x

1− x

)
=

1

2
[ln(1 + x)− ln(1− x)], |x| < 1.

Then

Part (i)

y′ =
1√

1 + x2

d2

dx2
(arcsinhx) =

d

dx
(1 + x2)−1/2

=
−1

2
(2x)(1 + x2)−3/2

= − x

(1 + x2)3/2
.
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Part (ii)

y′ =
1√

x2 − 1
, x > 1

d2

dx2
(arccoshx) =

d

dx
(x2 − 1)−1/2

=
−1

2
(2x)(x2 − 1)−3/2

= − x

(x2 − 1)3/2
, x > 1

Part (iii)

y′ =
1

1− x2
, |x| < 1.

d2

dx
(arctanhx) =

d

dx
(1− x2)−1

= (−1)(1− x2)−2(−2x)

=
x

(1− x2)2
, |x| < 1.

Example 3.5.5 Find y′′ for the equation x2 + y2 = 4.
First, we find y′ by implicit differentiation.

2x+ 2yy′ = 0→ y′,
x

y
.

Now, we differentiate again with respect to x.

y′′ =
y · 1− xy′

y2

= −y − x(−x/y)

y2
(replace y′ by −x/y)

= −y
2 + x2

y3
(Why?)

= − 4

y3
(since x2 + y2 = 4)
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Example 3.5.6 Compute y′′ for x3 + y3 = 4xy.
From Example 25 in the last section we found that

y′ =
4y − 3x2

3y2 − 4x
if 3y2 − 4x 6= 0.

To find y′′, we differentiate y′ with respect to x to get

y′′ =
(3y2 − 4x)(4y′ − 3x2)− (4y − 3x2)(6yy′ − 4)

3y2 − 4x
, 3y2 − 4x 6= 0.

In order to simplify any further, we must first replace y′ by its computed
value. We leave this as an exercise.

Example 3.5.7 Compute f (n)(c) for the given f and c and all natural num-
bers n:

(i) f(x) = sinx, c = 0 (ii) f(x) = cosx, x = 0 (iii) f(x) = ln(x), c = 1

(iv) f(x) = ex, c = 0 (v) f(x) = sinhx, x = 0 (vi) f(x) = coshx, x = 0

To compute the general nth derivative formula we must discover a pattern
and then generalize the pattern.

Part (i) f(x) = sinx, f ′(x) = cosx, f ′′(x) = − sinx, f ′′′(x) = cosx, f4(x) =
sinx. Then the next four derivatives are repeated and so on. We get

f (4n)(n) = sinx, f (4n+1)(x) = cosx, f (4n+2)(x) = − sinx, f (4n+3)(x) = − cosx.

By evaluating these at c = 0, we get

f (4n)(0) = 0, f (4n+2)(0); f (4n+1)(0) = 1 and f (4n+3)(0) = −1,

for n = 0, 1, 2, · · ·

Part (ii) This part is similar to Part (i) and is left as an exercise.

Part (iii) f(x) = lnx, f ′(x) = x−1, f ′′(x) = (−1)x−2, f (3)(x) = (−1)(−2)x−3, . . . .,
f (n)(x) = (−1)(−2) . . . (−(n − 1))x−n = (−1)n−1(n − 1)!x−n, f (n)(1) =
(−1)n−1(n− 1)!, n = 1, 2, . . .
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Part (iv) f(x) = ex, f ′(x) = ex, f ′′(x) = ex, . . . , f (n)(x) = ex, f (n)(0) =
1, n = 0, 1, 2, . . .

Part (v) f(x) = sinhx, f ′(x) = coshx, f ′′(x) = sinhx, . . . f (2n)(x) = sinhx,
f (2n+1)(x) = coshx, f (2n)(0) = 0, f (2n+1)(0) = 1, n = 0, 1, 2, . . .

Part (vi) f(x) = coshx, f ′(x) = sinhx, f ′′(x) = coshx, . . . , f (2n)(x) =
coshx, f (2n+1)(x) = sinhx, f (2n)(0) = 1, f (2n+1)(0) = 0, n = 0, 1, 2, . . .

Exercises 3.5 Find the first two derivatives of each of the following func-
tions f .

1. f(t) = 4t3 − 3t2 + 10 2. f(x) = 4 sin(3x) + 3 cos(4x)

3. f(x) = (x2 + 1)3 4. f(x) = x2 sin(3x)

5. f(x) = e3x sin 4x 6. f(x) = e2x cos 4x

7. f(x) =
x2

2x+ 1
8. f(x) = (x2 + 1)10

9. f(x) = ln(x2 + 1) 10. f(x) = log10(x4 + 1)

11. f(x) = 3 sinh(4x) + 5 cosh(4x) 12. f(x) = tanh(3x)

13. f(x) = x tanx 14. f(x) = x2ex

15. f(x) = arctan(3x) 16. f(x) = arcsinh (2x)

17. f(x) = cos(nx) 18. f(x) = (x2 + 1)100

Show that the given y(x) satisfies the given equation:

19. y = A sin(4x) +B cos(4x) satisfies y′′ + 16y = 0

20. y = A sinh(4x) +B cosh(4x) satisfies y′′ − 16y = 0
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21. y = e−x(a sin(2x) + b cos(2x)) satisfies y′′ − 2y′ + 2y = 0

22. y = ex(a sin(3x) + b cos(3x)) satisfies y′′ − 2y′ + 10y = 0

Compute the general nth derivative for each of the following:

23. f(x) = e2x 24. f(x) = sin 3x

25. f(x) = cos 4x 26. f(x) = ln(x+ 1)

27. f(x) = sinh(2x) 28. f(x) = cosh(3x)

29. f(x) = (x+ 1)100 30. f(x) = ln
(

1+x
1−x

)
Find y′ and y′′ for the following equations:

31. x4 + y4 = 20 32. x2 + xy + y2 = 16



Chapter 4

Applications of Differentiation

One of the important problems in the real world is optimization. This is the
problem of maximizing or minimizing a given function. Differentiation plays
a key role in solving such real world problems.

4.1 Mathematical Applications

Definition 4.1.1 A function f with domain D is said to have an absolute
maximum at c if f(x) ≤ f(c) for all x ∈ D. The number f(c) is called the
absolute maximum of f on D. The function f is said to have a local maximum
(or relative maximum) at c if there is some open interval (a, b) containing c
and f(c) is the absolute maximum of f on (a, b).

Definition 4.1.2 A function f with domain D is said to have an absolute
minimum at c if f(c) ≤ f(x) for all x in D. The number f(c) is called the
absolute minimum of f on D. The number f(c) is called a local minimum
(or relative minimum) of f if there is some open interval (a, b) containing c
and f(c) is the absolute minimum of f on (a, b).

Definition 4.1.3 An absolute maximum or absolute minimum of f is called
an absolute extremum of f . A local maximum or minimum of f is called a
local extremum of f .

146
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Theorem 4.1.1 (Extreme Value Theorem) If a function f is continuous
on a closed and bounded interval [a, b], then there exist two points, c1 and c2,
in [a, b] such that f(c1) is the absolute minimum of f on [a, b] and f(c2) is
the absolute maximum of f on [a, b].

Proof. Since [a, b] is a closed and bounded set and f is continuous on [a, b],
Theorem 4.1.1 follows from Theorem 2.3.14.

Definition 4.1.4 A function f is said to be increasing on an open interval
(a, b) if f(x1) < f(x2) for all x1 and x2 in (a, b) such that x1 < x2. The
function f is said to be decreasing on (a, b) if f(x1) > f(x2) for all x1 and
x2 in (a, b) such that x1 < x2. The function f is said to be non-decreasing
on (a, b) if f(x1) ≤ f(x2) for all x1 and x2 in (a, b) such that x1 < x2. The
function f is said to be non-increasing on (a, b) if f(x1) ≥ f(x2) for all x1

and x2 in (a, b) such that x1 < x2.

Theorem 4.1.2 Suppose that a function f is defined on some open interval
(a, b) containing a number c such that f ′(c) exists and f ′(c) 6= 0. Then f(c)
is not a local extremum of f .

Proof. Suppose that f ′(c) 6= 0. Let ε =
1

2
|f ′(c)|. Then ε > 0.

Since ε > 0 and

f ′(c) = lim
x→c

f(x)− f(c)

x− c
,

there exists some δ > 0 such that if 0 < |x− c| < δ, then∣∣∣∣f(x)− f(c)

x− c
− f ′(c)

∣∣∣∣ < 1

2
|f ′(c)|

−1

2
|f ′(c)| < f(x)− f(c)

x− c
− f ′(c) < 1

2
|f ′(c)|

f ′(c)− 1

2
|f ′(c)| < f(x)− f(c)

x− c
< f ′(c) +

1

2
|f ′(c)|.

The following three numbers have the same sign, namely,

f ′(c), f ′(c)− 1

2
|f ′(c)| and f ′(c) +

1

2
|f ′(c)|.
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Since f ′(c) > 0 or f ′(c) < 0, we conclude that

0 <
f(x)− f(c)

x− c
or

f(x)− f(c)

x− c
< 0

for all x such that 0 < |x− c| < δ. Thus, if c− δ < x1 < c < x2 < c+ δ, then
either f(x1) < f(c) < f(x2) or f(x1) > f(c) > f(x2). It follows that f(c) is
not a local extremum.

Theorem 4.1.3 If f is defined on an open interval (a, b) containing c, f(c)
is a local extremum of f and f ′(c) exists, then f ′(c) = 0.

Proof. This theorem follows immediately from Theorem 4.1.2.

Theorem 4.1.4 (Rolle’s Theorem) Suppose that a function f is continuous
on a closed and bounded interval [a, b], differentiable on the open interval
(a, b) and f(a) = f(b). Then there exists some c such that a < c < b and
f ′(c) = 0.

Proof. Since f is continuous on [a, b], there exist two numbers c1 and c2

on [a, b] such that f(c1) ≤ f(x) ≤ f(c2) for all x in [a, b]. (Extreme Value
Theorem.) If f(c1) = f(c2), then the function f has a constant value on [a, b]
and f ′(c) = 0 for c = 1

2
(a + b). If f(c1) 6= f(c2), then either f(c1) 6= f(a)

or f(c2) 6= f(a). But f ′(c1) = 0 and f ′(c2) = 0. It follows that f ′(c1) = 0 or
f ′(c2) = 0 and either c1 or c2 is between a and b. This completes the proof
of Rolle’s Theorem.

Theorem 4.1.5 (The Mean Value Theorem) Suppose that a function f is
continuous on a closed and bounded interval [a, b] and f is differentiable on
the open interval (a, b). Then there exists some number c such that a < c < b
and

f(b)− f(a)

b− a
= f ′(c).

Proof. We define a function g(x) that is obtained by subtracting the line
joining (a, f, (a)) and (b, f(b)) from the function f :

g(x) = f(x)−
[
f(b)− f(a)

b− a
(x− a) + f(a)

]
.
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The g is continuous on [a, b] and differentiable on (a, b). Furthermore, g(a) =
g(b) = 0. By Rolle’s Theorem, there exists some number c such that a < c < b
and

0 = g′(c)

= f ′(c)− f(b)− f(a)

b− a
.

Hence,
f(b)− f(a)

b− a
= f ′(c)

as required.

Theorem 4.1.6 (Cauchy-Mean Value Theorem) Suppose that two functions
f and g are continuous on a closed and bounded interval [a, b], differentiable
on the open interval (a, b) and g′(x) 6= 0 for all x in (a, b). Then there exists
some number c in (a, b) such that

f(b)− f(a)

g(b)− g(a)
=
f ′(c)

g′(c)
.

Proof. We define a new function h on [a, b] as follows:

h(x) = f(x)− f(a)− f(b)− f(a)

g(b)− g(a)
(g(x)− g(a)).

Then h is continuous on [a, b] and differentiable on (a, b). Furthermore,

h(a) = 0 and h(b) = 0.

By Rolle’s Theorem, there exist some c in (a, b) such that h′(c) = 0. Then

0 = h′(c) = f ′(c)− f(b)− f(a)

g(b)− g(a)
g′(c)

and, hence,
f(b)− f(a)

g(b)− g(c)
=
f ′(c)

g′(c)

as required. This completes the proof of Theorem 4.1.6.
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Theorem 4.1.7 (L’Hospital’s Rule, 0
0

Form) Suppose f and g are differen-
tiable and g′(x) 6= 0 on an open interval (a, b) containing c (except possibly
at c). Suppose that

lim
x→c

f(x) = 0 , lim
x→c

g(x) = 0 and lim
x→c

f ′(x)

g′(x)
= L,

where L is a real number, ∞, or −∞. Then

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)
= L.

Proof. We define f(c) = 0 and g(c) = 0. Let x ∈ (c, b). Then f and g are
continuous on [c, x], differentiable on (c, x) and g′(y) 6= 0 on (c, x). By the
Cauchy Mean Value Theorem, there exists some point y ∈ (c, x) such that

f(x)

g(x)
=
f(x)− f(c)

g(x)− g(c)
=
f ′(y)

g′(y)
.

Then

lim
x→c+

f(x)

g(x)
= lim

y→c+

f ′(y)

g′(y)
= L.

Similarly, we can prove that

lim
x→c−

f(x)

g(x)
= L.

Therefore,

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)
= L.

Remark 12 Theorem 4.1.7 is valid for one-sided limits as well as the two-
sided limit. This theorem is also true if c =∞ or c = −∞.

Theorem 4.1.8 Theorem 4.1.7 is valid for the case when

lim
x→c

f(x) =∞ or −∞ and lim
x→c

g(x) =∞ or −∞.

Proof of Theorem 4.1.8 is omitted.
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Example 4.1.1 Find each of the following limits using L’Hospital’s Rule.

(i) lim
x→0

sin 3x

sin 5x
(ii) lim

x→0

tan 2x

tan 3x
(iii) lim

x→0

sinx

x

(iv) lim
x→0

x

sinx
(v) lim

x→0

1− cosx

x
(vi) lim

x→0
x lnx

We compute these limits as follows:

(i) lim
x→0

sin 3x

sin 5x
= lim

x→0

3 cos 3x

5 cos 5x
=

3

5

(ii) lim
x→0

tan 2x

tan 3x
= lim

x→0

2 sec2 x

3 sec2 3x
=

2

3

(iii) lim
x→0

sinx

x
= lim

x→0

cosx

1
= 1

(iv) lim
x→0

x

sinx
= lim

x→0

1

cosx
= 1

(v) lim
x→0

1− cosx

x
= lim

x→0

sinx

1
= 0

(vi) lim
x→0

x lnx = lim
x→0

lnx(
1
x

) = lim
x→0

(
1
x

)(−1
x2

) = lim
x→0

(−x) = 0.

Theorem 4.1.9 Suppose that two functions f and g are continuous on a
closed and bounded interval [a, b] and are differentiable on the open interval
(a, b). Then the following statements are true:

(i) If f ′(x) > 0 for each x in (a, b), then f is increasing on (a, b).

(ii) If f ′(x) < 0 for each x in (a, b), then f is decreasing on (a, b).

(iii) If f ′(x) ≥ 0 for each x in (a, b), then f is non-decreasing on (a, b).

(iv) If f ′(x) ≤ 0 for each x in (a, b), then f is non-increasing on (a, b).

(v) If f ′(x) = 0 for each x in (a, b), then f is constant on (a, b).
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(vi) If f ′(x) = g′(x) on (a, b), then f(x) = g(x)+C, for constant C, on (a, b).

Proof.
Part (i) Suppose a < x1 < x2 < b. Then f is continuous on [x1, x2] and
differentiable on (x1, x2). By the Mean Value Theorem, there exists some c
such that a < x1 < c < x2 < b and

f(x2)− f(x1)

x2 − x1

= f ′(c) > 0.

Since x2 − x1 > 0, it follows that f(x2) − f(x1) > 0 and f(x2) > f(x1). By
definition, f is increasing on (a, b). The proof of Parts (ii)–(v) are similar
and are left as an exercise.

Part (vi) Let F (x) = f(x)− g(x) for all x in [a, b]. Then F is continuous on
[a, b] and differentiable on (a, b). Furthermore, F ′(x) = 0 on (a, b). Hence,
by Part (v), there exists some constant C such that for each x in (a, b),

F (x) = C, f(x)− g(x) = c, f(x) = g(x) + C.

This completes the proof of the theorem.

Theorem 4.1.10 (First Derivative Test for Extremum) Let f be continuous
on an open interval (a, b) and a < c < b.

(i) If f ′(x) > 0 on (a, c) and f ′(x) < 0 on (c, b), then f(c) is a local maxi-
mum of f on (a, b).

(ii) If f ′(x) < 0 on (a, c) and f ′(x) > 0 on (c, b), then f(c) is a local minimum
of f on (a, b).

Proof. This theorem follows immediately from Theorem 4.1.9 and its proof
is left as an exercise.

Theorem 4.1.11 (Second Derivative Test for Extremum) Suppose that f, f ′

and f ′′ exist on an open interval (a, b) and a < c < b. Then the following
statements are true:

(i) If f ′(c) = 0 and f ′′(c) > 0, then f(c) is a local minimum of f .

(ii) If f ′(c) = 0 and f ′′(c) < 0, then f(c) is a local maximum of f .



4.1. MATHEMATICAL APPLICATIONS 153

(iii) If f ′(c) = 0 and f ′′(c) = 0, then f(c) may or may not be a local extremum.

Proof.
Part (i) If f ′′(c) > 0, then by Theorem 4.1.2, there exists some δ > 0 such
that for all x in (c− δ, c+ δ),

f ′(c)

x− c
=
f ′(x)− f ′(c)

x− c
> 0.

Hence, f ′(x) > 0 on (c, c + δ) and f ′(x) < 0 on (c − δ, c). By the first
derivative test, f(c) is a local minimum of f .

Part (ii) The proof of Part (ii) is similar to Part (i) and is left as an exercise.

Part (iii) Let f(x) = x3 and g(x) = x4. Then

f ′(0) = g′(0) = f ′′(0) = g′′(0).

However, f has no local extremum at 0 but g has a local maximum at 0.
This completes the proof of this theorem.

Definition 4.1.5 (Concavity) Suppose that f is defined in some open inter-
val (a, b) containing c and f ′(c) exists. Let

y = g(x) = f ′(c)(x− c) + f(c)

be the equation of the line tangent to the graph of f at c.

(i) If there exists δ > 0 such that f(x) > g(x) for all x in (c−δ, c+δ), x 6= c,
then the graph of f is said to be concave upward at c. If the graph of f is
concave upward at every c in (a, b), then it is said to be concave upward
on (a, b).

(ii) If there exists δ > 0 such that f(x) < g(x) for all x in (c−δ, c+δ), x 6= c,
then the graph of f is said to be concave downward at c. If the graph of
f is concave downward at every c in (a, b), then it is said to be concave
downward on (a, b).

(iii) The point (c, f(c)) is said to be a point of inflection if there exists some
δ > 0 such that either
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(i) the graph of f is concave upward on (c−δ, c) and concave downward
on (c, c+ δ), or

(ii) the graph of f is concave downward on (c−δ, c) and concave upward
on (c, c+ δ).

Remark 13 The first derivative test, second derivative test and concavity
test are very useful in graphing functions.

Example 4.1.2 Let f(x) = x4 − 4x2, −3 ≤ x ≤ 3

(a) Locate the local extrema, and point extrema and points of inflections.

(b) Locate the intervals where the graph of f is increasing, decreasing, con-
cave up and concave down.

(c) Sketch the graph of f . Determine the absolute maximum and the abso-
lute minimum of the graph of f on [−3, 3].

Part (a)

(i) f(x) = x4− 4x2 = x2(x2− 4) = 0→ x = 0, x = −2, x = 2 are zeros of f .

(ii) f ′(x) = 4x3 − 8x = 0 = 4x(x2 − 2) = 0→ x = 0, x = −
√

2 and x =
√

2
are the critical points of f .

(iii) f ′′(x) = 12x2 − 4 = 12

(
x2 − 1

3

)
= 0 → x = − 1√

3
and x =

1√
3

are

the x-coordinates of the points of inflections of the graph of f , since f ′′

changes sign at these points.

(iv) f ′(0) = 0, f ′′(0) = −4→ f(0) = 0 is a local minimum of f .

f ′(−
√

2) = 0, f ′′(−
√

2) > 0→ f(−
√

2) = −8 is a local minimum of f .

f ′(
√

2) = 0, f ′′(
√

2) > 0→ f(
√

2) = −8 is a local minimum of f .

(v) f ′′(x) changes sign at x = ± 1√
3

and hence

(
± 1√

3
,
−11

9

)
are the points

of inflection of the graph of f .
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Part (b) The function f is decreasing on (−∞,−
√

2) ∪ (0,
√

2) and is increasing

on (−
√

2, 0) ∪ (
√

2,∞). The graph of f is concave up on

(
−∞, −1√

3

)
∪(

1√
3
,∞
)

and is concave down on

(
−1√

3
,

1√
3

)
.

(c) f(−3) = f(3) = 45 is the absolute maximum of f and is obtained at the
end points of the interval.

Also, f(−
√

2) = f(
√

2) = −8 is the absolute minimum of f on [−3, 3].
We note that f(0) = 0 is a local maximum of f . The graph is sketched
with the above information.

graph

Example 4.1.3 Consider g(x) = x2−x2/3,−2 ≤ x ≤ 3. Sketch the graph of
g, locating extrema, zeros, points of inflection, intervals where f is increasing
or decreasing, and intervals where the graph of f is concave up or concave
down.

Let us compute the zeros and critical points of g.

(i) g(x) = x2/3(x4/3 − 1) = 0→ x = 0,−1, 1.

g′(x) = 2x− 2

3
x−1/3 = 2x−1/3

(
x4/3 − 1

3

)
= 0→ x = ±

(
1

3

)3/4

.

We note that g′(0) is undefined. The critical points are, 0,±
(

1

3

)3/4

.

(ii) g′′(x) = 2 +
2

9
x−4/3 > 0 for all x, except x = 0, where g′′(x) does not

exist.

The function g is decreasing on

(
−∞,−

(
1

3

)3/4
)

and

(
0,

(
1

3

)3/4
)

.

The function g is increasing on

(
−
(

1

3

)3/4

, 0

)
∪

((
1

3

)3/4

,∞

)
.
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(iii) The point (0, 0) is not an inflection point, since the graph is concave up
everywhere on (−∞, 0) ∪ (0,∞).

Exercises 4.1 Verify that each of the following Exercises 1–2 satisfies the
hypotheses and the conclusion of the Mean Value Theorem. Determine the
value of the admissible c.

1. f(x) = x2 − 4x, −2 ≤ x ≤ 2

2. g(x) = x3 − x2 on [−2, 2]

3. Does the Mean Value Theorem apply to y = x2/3 on [−8, 8]? If not, why
not?

4. Show that f(x) = x2 − x3 cannot have more than two zeros by using
Rolle’s Theorem.

5. Show that f(x) = lnx is an increasing function. (Use Mean Value The-
orem.)

6. Show that f(x) = e−x is a decreasing function.

7. How many real roots does f(x) = 12x4 − 14x2 + 2 have?

8. Show that if a polynomial has four zeros, then there exists some c such
that f ′′′(c) = 0.

A function f is said to satisfy a Lipschitz condition with constant M if

|f(x)− f(y)| ≤M |x− y|

for all x and y. The number M is called a Lipschitz constant for f .

9. Show that f(x) = sinx satisfies a Lipschitz condition. Find a Lipschitz
constant.

10. Show that g(x) = cosx satisfies a Lipschitz condition. Find a Lipschitz
constant for g.

In each of the following exercises, sketch the graph of the given function over
the given interval. Locate local extrema, absolute extrema, intervals where
the function is increasing, decreasing, concave up or concave down. Locate
the points of inflection and determine whether the points of inflection are
oblique or not.
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11. f(x) =
x2

2x2 + 1
, [−1, 1] 12. f(x) = x2(1− x)2, [−2, 2]

13. f(x) = |x− 1|+ 2|x+ 2|, [−4, 4] 14. f(x) = 2x2 +
1

x2
, [−1, 1]

15. f(x) = sinx− cosx, [0, 2π] 16. f(x) = x− cosx, [0, 2π]

17. f(x) =
2x

x2 − 9
, [−4, 4] 18. f(x) = 2x3/5 − x6/5, [−2, 2]

19. f(x) = (x2 − 1)e−x
2
, [−2, 2] 20. f(x) = 3 sin 2x+ 4 cos 2x, [0, 2π]

Evaluate each of the following limits by using the L’Hospital’s Rule.

21. lim
x→0

sin 3x

tan 5x
22. lim

x→0

x+ sinπx

x− sinπx

23. lim
x→1

x lnx

1− x
24. lim

x→0

ex − 1

ln(x+ 1)

25. lim
x→0

ex − 1

x
26. lim

x→0

10x − 1

x

27. lim
x→0

sin 3x

sinh(5x)
28. lim

x→0

(
1

x
− csc x

)

29. lim
x→0

x+ tanx

x+ sinx
30. lim

x→1

(1− x2)

(1− x3)

4.2 Antidifferentiation

The process of finding a function g(x) such that g(x) = f(x), for a given
f(x), is called antidifferentiation.

Definition 4.2.1 Let f and g be two continuous functions defined on an
open interval (a, b). If g′(x) = f(x) for each x in (a, b), then g is called an
antiderivative of f on (a, b).
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Theorem 4.2.1 If g1(x) and g2(x) are any two antiderivatives of f(x) on
(a, b), then there exists some constant C such that

g1(x) = g2(x) + C.

Proof. If h(x) = g1(x)− g2(x), then

h′(x) = g′1(x)− g′2(x)

= f(x)− f(x)

= 0

for all x in (a, b). By Theorem 4.1.9, Part (iv), there exists some constant c
such that for all x in (a, b),

C = h(x) = g1(x)− g2(x)

g2(x) = g1(x) + C.

Definition 4.2.2 If g(x) is an antiderivative of f on (a, b), then the set
{g(x)+C : C is a constant} is called a one-parameter family of antiderivatives
of f . We called this one-parameter family of antiderivatives the indefinite
integral of f(x) on (a, b) and write∫

f(x)dx = g(x) + C.

The expression “
∫
f(x)dx” is read as “the indefinite integral of f(x) with

respect to x.” The function “f(x)” is called the integrand, “
∫

” is called the
integral sign and “x” is called the variable of integration. When dealing with
indefinite integrals, we often use the terms antidifferentiation and integration
interchangeably. By definition, we observe that

d

dx

(∫
f(x)dx

)
= g′(x) = f(x).

Example 4.2.1 The following statements are true:

1.

∫
x3dx =

1

4
x4 + c 2.

∫
xndx =

xn+1

n+ 1
+ c, n 6= −1
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3.

∫
1

x
dx = ln |x|+ c 4.

∫
sinx dx = − cosx+ c

5.

∫
sin(ax)dx =

−1

a
cos(ax) + c 6.

∫
cosx dx = sinx+ c

7.

∫
cos(ax)dx =

1

a
sin(ax) + c 8.

∫
tanx dx = ln | sec x|+ c

9.

∫
tan(ax)dx =

1

a
ln | sec(ax)|+ c 10.

∫
cotx dx = ln | sinx|+ c

11.

∫
cot(ax)dx =

1

a
ln | sin(ax)|+ c 12.

∫
exdx = ex + c

13.

∫
e−xdx = −e−x + c 14.

∫
eaxdx =

1

a
eax + c

15.

∫
sinhxdx = coshx+ c 16.

∫
coshx dx = sinhx+ c

17.

∫
tanhx dx = ln | coshx|+ c

18.

∫
cothx dx = ln | sinhx|+ c

19.

∫
sinh(ax) =

1

a
cosh(ax) + c

20.

∫
cosh(ax)dx =

1

a
sinh(ax) + c

21.

∫
tanh(ax)dx =

1

a
ln | cosh ax|+ c

22.

∫
coth (ax)dx =

1

a
ln | sinh(ax)|+ c
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23.

∫
sec x dx = ln | sec x+ tanx|+ c

24.

∫
csc x dx = − ln | csc x+ cotx|+ c

25.

∫
sec(ax)dx =

1

a
ln | sec(ax) + tan(ax)|+ c

26.

∫
csc(ax)dx =

−1

a
ln | csc(ax) + cot(ax)|+ c

27.

∫
sec2 xdx = tanx+ c

28.

∫
sec2(ax)dx =

1

a
tan(ax) + c

29.

∫
csc2 x dx = − cotx+ c

30.

∫
csc2(ax)dx =

−1

a
cot(ax) + c

31.

∫
tan2 x dx = tanx− x+ c

32.

∫
cot2 x dx = − cotx− x+ c

33.

∫
sin2 x dx =

1

2
(x− sinx cosx) + c =

1

2

(
x− sin 2x

2

)
+ c

34.

∫
cos3 xdx =

1

2
(x+ sinx cosx) + c =

1

2

(
x+

sin 2x

2

)
+ c

35.

∫
sec x tanx dx = secx+ c
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36.

∫
csc x cotx dx = − csc x+ c

Each of these indefinite integral formulas can be proved by differentiating
the right sides of the equation. We show some details in selected cases.

Part 3. Recall that

d

dx
(|x|) =

x

|x|
=
|x|
x
, x 6= 0.

Hence,
d

dx
(ln |x|+ c) =

1

|x|
·
(
|x|
x

+ 0

)
=

1

x
.

The absolute values are necessary because ln(x) is defined for positive num-
bers only.

Part 23.
d

dx
(ln | sec x+ tanx|) =

1

sec x+ tanx
· (secx tanx+ sec2 x)

=
sec x(tanx+ secx)

(secx+ tanx)
= secx.

Part 31.
d

dx
(tanx− x+ c) = sec2 x− 1 = tan2 x.

Part 33.
d

dx

(
1

2
(x− sinx cosx) + c

)

=
d

dx

(
x

2
− sin 2x

4

)
(Trigonometric Identity)

=
1

2
− 2 cos 2x

4

=
1

2
(1− cosx)

= sin2 x (Trigonometric Identity)



162 CHAPTER 4. APPLICATIONS OF DIFFERENTIATION

Part 34.
d

dx

(
1

2
(x+ sinx cosx) + c

)

=
d

dx

(
x

2
+

sin 2x

4

)

=
1

2
+

1

2
cos 2x

=
1

2
(1 + cos 2x)

= cos2 x (Trigonometric Identity)

Example 4.2.2 The following statements are true:

1.

∫
1√

1− x2
dx = arcsinx+ c 2.

∫
x√

1− x2
dx = −

√
1− x2 + c

3.

∫
1√

1 + x2
dx = arcsinhx+ c 4.

∫
1√

1 + x2
dx =

√
1 + x2 + c

= ln(x+
√

1 + x2) + c

5.

∫
1√

x2 − 1
dx = arccoshx+ c 6.

∫
x√

x2 − 1
dx =

√
x2 − 1 + c

= ln |x+
√
x2 − 1|+ c

7.

∫
1

1 + x2
dx = arctanx+ c 8.

∫
1

1− x2
dx = arctanhx+ c

=
1

2
ln

∣∣∣∣1 + x

1− x

∣∣∣∣+ c

9.

∫
1

|x|
√
x2 − 1

dx = arcsecx+ c 10.

∫
bxdx =

bx

ln b
+ c, b > 0, b 6= 1

All of these integration formulas can be verified by differentiating the right
sides of the equations.



4.2. ANTIDIFFERENTIATION 163

Remark 14 In the following exercises, use the substitution to reduce the
integral to a familiar form and then use the integral tables if necessary.

Exercises 4.2 In each of the following, evaluate the indefinite integral by
using the given substitution. Use the formula:∫

f(g(t))g′(t)dt =

∫
f(u)du, where u = g(t), du = g′(t)dt.

1.

∫
1√

4− x2
dx, x = 2 sin t 2.

∫
1√

4 + x2
dx, x = 2 cosh t

3.

∫
1√

9 + x2
dx, x = 3 tan t 4.

∫
1

x
√
x2 − 9

dx, x = 3 sec t

5.

∫
xe−x

2

dx, u = −x2 6.

∫
sin(7x+ 1)dx;u = 7x+ 1

7.

∫
sec2(3x+ 1)dx, u = 3x+ 1 8.

∫
cos2(2x+ 1)dx, u = 2x+ 1

9.

∫
x sin2(x2)dx, u = x2 10.

∫
tan2(5x+ 7)dx, u = 5x+ 7

11.

∫
sec(2x− 3) tan(2x− 3)dx, u = 2x− 3 12.

∫
cot(5x+ 2)dx, u = 5x+ 2

13.

∫
x(x2 + 1)10dx, u = x2 + 1 14.

∫
x

(x2 + 1)1/3
dx, u = x2 + 1

15.

∫
1

ex + e−x
dx, u = ex 16.

∫
e2x − e−2x

e2x + e−2x
dx, u = e2x + e−2x

17.

∫
sin3(2x) cos 2x dx, u = sin 2x 18.

∫
esin 3x cos 3x dx, u = sin 3x

19.

∫
sec2 x tanx dx, u = secx 20.

∫
tan10 x sec2 x dx, u = tanx
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21.

∫
x ln(x2 + 1)

x2 + 1
dx, u = ln(x2 + 1) 22.

∫
x√

4 + x2
dx, u = 4 + x2

23.

∫
x dx√
4− x2

, u = 4− x2 24.

∫
x

9 + x2
dx, u = 9 + x2

25.

∫
1√

4 + x2
dx, u = 2 sinhx 26.

∫
1√

x2 − 4
dx, u = 2 coshx

4.3 Linear First Order Differential Equations

Definition 4.3.1 If p(x) and q(x) are defined on some open interval, then
an equation of the form

dy

dx
+ p(x)y = q(x)

is called a linear first order differential equation in the variable y.

Example 4.3.1 (Exponential Growth). A model for exponential growth is
the first order differential equation

dy

dx
= ky, k > 0, y(0) = y0.

To solve this equation we divide by y, integrate both sides with respect to x,

replacing

(
dy

dx

)
dx by dy as follows:

∫
1

y

(
dy

dx

)
dx =

∫
k dx∫

1

y
dy = kx+ c

ln |y| = kx+ c

|y| = ekx+c = ecekx

y = ±ecekx.
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Next, we impose the condition y(0) = y0 to get

y(0) = ±ec = y0

y = y0e
kx .

The number y0 is the value of y at x = 0. If the variable x is replaced by the
time variable t, we get

y(t) = y(0)ekt.

If k > 0, this is an exponential growth model. If k < 0, this is an example of
an exponential decay model.

Theorem 4.3.1 (Linear First Order Differential Equations) If p(x) and q(x)
are continuous, then the differential equation

dy

dx
+ p(x)y = q(x) (1)

has the one-parameter family of solutions

y(x) = e−
∫
p(x)dx

[∫
q(x)e

∫
p(x)dxdx+ c

]
.

Proof. We multiply the given differential equation (1) by e
∫
p(x)dx, which is

called the integrating factor.

e
∫
p(x)dx dy

dx
+ p(x)e

∫
p(x)dxy = q(x)e

∫
p(x)dx. (2)

Since the integrating factor is never zero, the equation (2) has exactly the
same solutions as equation (1). Next, we observe that the left side of the
equation is the derivative of the product the integrating factor and y:

d

dx

(
e
∫
p(x)dxy

)
= q(x)e

∫
p(x)dx. (3)

By the definition of the indefinite integral, we express equation (3) as follows:

e
∫
p(x)dxy =

∫ (
q(x)e

∫
p(x)dxdx

)
+ c. (4)



166 CHAPTER 4. APPLICATIONS OF DIFFERENTIATION

Next, we multiply both sides of equation (4) by e−
∫
p(x)dx :

y = e−
∫
p(x)dx

[∫
q(x)e

∫
p(x)dxdx+ c

]
. (5)

Equation (5) gives a one-parameter family of solutions to the equation. To
pick a particular member of the family, we specify either a point on the curve,
or the slope at a point of the curve. That is,

y(0) = y0 or y′(0) = y′0.

Then c is uniquely determined. This completes the proof.

Example 4.3.2 Solve the differential equation

y′ + 4y = 10 , y(0) = 200.

Step 1. We multiply both sides by the integrating factor

e
∫

4dx = e4x

e4x dy

dx
+ 4e4xy = 10e4x. (6)

Step 2. We observe that the left side is the derivative of the integrating factor
and y.

d

dx
(e4xy) = 10e4x. (7)

Step 3. Using the definition of the indefinite integral, we antidifferentiate:

e4xy =

∫
(10e4x)dx+ c.

Step 4. We multiply both sides by e−4x.

y = e−4x

[∫
(10e4x)dx+ c

]
y = e−4x

[
10 · e

4x

4
+ c

]
y(x) =

10

4
+ ce−4x . (8)
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Step 5. We impose the condition y(0) = 200 to solve for c.

y(0) = 200 =
5

2
+ c, c = 200− 5

2
.

Step 6. We replace c by its value in solution (8)

y(x) =
5

2
+

(
200− 5

2

)
e−4x .

Exercises 4.3 Find y(t) in each of the following:

1. y′ = 4y, y(0) = 100 2. y′ = −2y, y(0) = 1200

3. y′ = −4(y − c), y(0) = y0 4. L
dy

dt
+Ry = E, y(0) = y0

5. y′ + 3y(t) = 32, y(0) = 0 6. y′ = ty, y(0) = y0(
Hint: y′ = ty,

∫
1

y

dy

dt
dt =

∫
tdt;

∫
1

y
dy =

t2

2
+ c.

)

7. The population P (t) of a certain country is given by the equation:

P ′(t) = 0.02P (t), P (0) = 2 million.

(i) Find the time when the population will double.

(ii) Find the time when the population will be 3 million.

8. Money grows at the rate of r% compounded continuously if

A′(t) =
( r

100

)
A(t), A(0) = A0,

where A(t) is the amount of money at time t.

(i) Determine the time when the money will double.

(ii) If A = $5000, determine the time for which A(t) = $15,000.
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9. A radioactive substance satisfies the equation

A′(t) = −0.002A(t), A(0) = A0,

where t is measured in years.

(i) Determine the time when A(t) =
1

2
A0. This time is called the

half-life of the substance.

(ii) If A0 = 20 grams, find the time t for which A(t) equals 5 grams.

10. The number of bacteria in a test culture increases according to the equa-
tion

N ′(t) = rN(t), n(0) = N0,

where t is measured in hours. Determine the doubling period. If N0 =
100, r = 0.01, find t such that N(t) = 300.

11. Newton’s law of cooling states that the time rate of change of the tem-
perature T (t) of a body is proportional to the difference between T and
the temperature A of the surrounding medium. Suppose that K stands
for the constant of proportionality. Then this law may be expressed as

T ′(t) = K(A− T (t)).

Solve for T (t) in terms of time t and T0 = T (0).

12. In a draining cylindrical tank, the level y of the water in the tank drops
according to Torricelli’s law

y′(t) = −Ky1/2

for some constant K. Solve for y in terms of t and K.

13. The rate of change P ′(t) of a population P (t) is proportional to the
square root of P (t). Solve for P (t).

14. The rate of change v′(t) of the velocity v(t) of a coasting car is propor-
tional to the square of v. Solve for v(t).

In exercises 15–30, solve for y.
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15. y′ = x− y, y(0) = 5 16. y′ + 3x2y = 0, y(0) = 6

17. xy′(x) + 3y(x) = 2x5, y(2) = 1 18. xy′ + y = 3x2, y(1) = 4

19. y′ + y = ex, y(0) = 100 20. y′ = −6xy, y(0) = 9

21. y′ = (sinx)y, y(0) = 5 22. y′ = xy3, y(0) = 2

23. y′ =
1 +
√
x

1 +
√
y
, y(0) = 10 24. y′ − 2y = 1, y(1) = 3

25. y′ = ry − c, y(0) = A 26. y′ − 3y = 2 sinx, y(0) = 12

27. y′ − 2y = 4e2x, y(0) = 4 28. y′ − 3x2y = ex
3
, y(0) = 7

29. y′ − 1

2x
y = sinx, y(1) = 3 30. y′ − 3y = e2x, y(0) = 1

4.4 Linear Second Order Homogeneous Dif-

ferential Equations

Definition 4.4.1 A linear second order differential equation in the variable
y is an equation of the form

y′′ + p(x)y′ + q(x)y = r(x).

If r(x) = 0, we say that the equation is homogeneous; otherwise it is called
non-homogeneous. If p(x) and q(x) are constants, we say that the equation
has constant coefficients.

Definition 4.4.2 If f and g are differentiable functions, then the Wronskian
of f and g is denoted W (f, g) and defined by

W (f, g) = f(x)g′(x)− f ′(x)g(x).

Example 4.4.1 Compute the following Wronskians:
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(i) W (sin(mx), cos(mx)) (ii) W (epx sin(qx), epx cos(qx))

(iii) W (xn, xm) (iv) W (x sin(mx), x cos(mx))

Part (i) W (sinmx, cosmx) = sin(mx)
d

dx
(cos(mx))− d

dx
(sin(mx)) cos(mx)

= −m sin2(mx)−m cos2(mx)
= −m(sin2(mx) + cos2(mx))
= −m

Part (iii) W (epx sin qx, epx cos qx)
= epx sin qx(pepx cos qx− qepx sin qx)
−epx cos qx(pepx sin qx+ qepx cos qx)

= −qe2px(sin2 qx+ cos2 qx)
= −qe2px.

Part (iii) W (xn, xm) = xn ·mxm−1 − xm · nxn−1

= (m− n)xn+m−1.

Part (iv) W (x sinmx, x cosmx) = (x sinmx)(cosmx−mx sinmx)
−(x cosmx)(sinmx+mx cosmx)

= −mx2(sin2mx+ cos2mx)
= −mx2.

Definition 4.4.3 Two differentiable functions f and g are said to be linearly
independent if their Wronskian, W (f(x), g(x)), is not zero for all x in the
domains of both f and g.

Example 4.4.2 Which pairs of functions in Example 8 are linearly indepen-
dent?

(i) In Part (i), W (sinmx, cosmx) = −m 6= 0 unless m = 0. Therefore,
sinmx and cosmx are linearly independent if m 6= 0.

(ii) In Part (ii),

W (epx sin qx, epx cos qx) = −qe2px 6≡ if q 6= 0.

Therefore, epx sin(qx) and epx cos qx are linearly independent if q 6= 0.
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(iii) In Part (iii), W (xn, xm) = (m− n)xn+m−1 6≡ 0 if m 6= n. Therefore, if m
and n are not equal, then xn and xm are linearly independent.

(iv) In Part (iv),
W (x sinmx, x cosmx) = −mx2 6≡ 0

if m 6= 0. Therefore, x sinmx and x cosmx are linearly independent if
m 6= 0.

Theorem 4.4.1 Consider the linear homogeneous second order differential
equation

y′′ + p(x)y′ + q(x)y = 0. (1)

(i) If y1(x) and y2(x) are any two solutions of (1), then every linear combi-
nation y(x), with constants A and B,

y(x) = Ay1(x) +By2(x)

is also a solution of (1).

(ii) If y1(x) and y2(x) are any two linearly independent solutions of (1), then
every solution y(x) of (1) has the form

y(x) = Ay1(x) +By2(x)

for some constants A and B.

Proof.
Part (i) Suppose that y1 and y2 are solutions of (1), A and B are any con-
stants. Then

(Ay1 +By2)′′ + p(Ay1 +By2)′ + q(Ay1 +By2)

= Ay′′1 +By′′2 + Apy′1 + ABy′2 + Aqy1 +BqBy2

= A(y′′1 + py′1 + qy1) +B(y′′2 + py′2 + qy2)

= A(0) +B(0) (Because y1 and y2 are solutions of (1))

= 0.

Hence, y = Ay1 + By2 are solutions of (1) whenever y1 and y2 are solutions
of (1).
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Part (ii) Let y be any solution of (1) and suppose that

y = Ay1 +By2 (2)

y′ = Ay′1 +By′2 (3)

We solve for A and B from equations (2) and (3) to get

A =
yy′2 − y2y

′

y1y′2 − y2y′1
=

W (y, y2)

W (y1, y2)

B =
y1y
′ − y′1y

y1y′2 − y2y′1
=
W (y1, y)

(y1, y2)
.

Since y1 and y2 are linearly independent, W (y1, y2) 6= 0, and hence, A and B
are uniquely determined.

Remark 15 It turns out that the Wronskian of two solutions of (1) is either
identically zero or never zero for any value of x.

Theorem 4.4.2 Let y1 and y2 be any two solutions of the homogeneous equa-
tion

y′′ + py′ + qy = 0. (1)

Let

W (x) = W (y1, y2) = y1(x)y′2(x)− y′1(x)y2(x).

Then

W ′(x) = −pW (x)

W (x) = ce−
∫
p(x)dx

for some constant c. If c = 0, then W (x) = 0 for every x. If c 6= 0, then
W (x) 6= 0 for every x.

Proof. Since y1 and y2 are solutions of (1),

y′′1 = −py′1 − qy1 (2)

y′′2 = −py′2 − qy2 (3)
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Then,

W ′(x) = (y1y
′
2 − y′1y2)′

= y′1y
′
2 + y1y

′′
2 − y′′1y2 − y′1y′2

= y1y
′′
2 − y2y

′′
1

= y1(−py′2 − qy2)− y2(−py′1 − qy1) (from (2) and (3))

= −p[y1y
′
2 − y2y

′
1]

= −pW (x).

Thus,
W ′(x) + pW (x) = 0.

By Theorem 4.3.1

W (x) = e−
∫
pdx

[∫
0 dx+ c

]
= ce−

∫
pdx.

If c = 0, W (x) ≡ 0; otherwise W (x) is never zero.

Theorem 4.4.3 (Homogeneous Second Order) Consider the linear second
order homogeneous differential equation with constant coefficients:

ay′′ + by′ + cy = 0, a 6= 0. (1)

(i) If y = emx is a solution of (1), then

am2 + bm+ c = 0. (2)

Equation (2) is called the characteristic equation of (1).

(ii) Let m1 =
−b−

√
b2 − 4ac

2a
and m2 =

−b+
√
b2 − 4ac

2a
. Then the follow-

ing three cases arise:

Case 1. The discriminant b2 − 4ac > 0. Then m1 and m2 are real and
distinct. The two linearly independent solutions of (1) are em1x and
em2x and its general solution has the form

y(x) = Aem1x +Bem2x.
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Case 2. The discriminant b2 − 4ac = 0. Then m1 = m2 = m, and only
one real solution exists for equation (2). The roots are repeated. In
this case, emx and xemx are two linearly independent solutions of (1)
and the general solution of (1) has the form

y(x) = Aemx +Bxemx = emx(A+Bx).

Case 3 b2 − 4ac < 0. Then m1 = p − iq, and m2 = p + iq where p =
−b/2a, and q =

√
4ac− b2/2a. In this case, the functions epx sin qx

and epx cos qx are two linearly independent solutions of (1) and the
most general solution of (1) has the form

y(x) = epx(A sin qx+B sin qx).

Proof. Let y = emx. Then y′ = memx, y′′ = m2emx and

ay′′ + by′ + cy = (am2 + bm+ c)emx = 0, a 6= 0↔
am2 + bm+ c = 0, a 6= 0↔

m =
−b
2a
±
√
b2 − 4ac

2a
.

This proves Part (i).

Case 1. For Case 1, em1x and em2x are solutions of (1). We show that these
are linearly independent by showing that their Wronskian is not zero.

W (em1x, em2x) = em1x ·m2e
m2x −m1e

m1x · em2x

= (m2 −m1)e(m1+m2)x.

Since m1 6= m2,W (em1x, em2x) 6= 0.

Case 2. We already know that emx 6= 0, and m = −b/2a. Let us try
y = xemx. Then

ay′′ + by′ + cy = a(2m+m2x)emx + b(1 +mx)emx + xemx

= (b+ 2am)emx + (am2 + bm+ c)xemx

= (b+ 2a(−b/2a))emx

= 0.
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Therefore, emx and xemx are both solutions. We only need to show that
they are linearly independent.

W (emx, xemx) = emx(emx +mxemx)−memx(xemx)
= e2mx +mxe2mx −mxe2mx

= e2mx

6= 0.

Hence, emx and xemx are linearly independent and the general solution
of (1) has the form

y(x) = Aemx +Bxemx = emx(A+Bx).

Case 3. In Example 8, we showed that

W (epx sin qx, epx cos qx) = −qe2px 6= 0

since q 6= 0.

We only need to show that epx sin qx and epx cos qx are solutions of (1).

Let y1 = epx sin qx and y2 = epx cos qx. Then,

y′1 = pepx sin qx+ qepx cos qx

y′′1 = p2epx sin qx+ pqepx cos qx+ pqepx cos qx− q2 sin qx

ay′′1 + by′1 + cy1 = aepx(p2 sin qx+ 2pq cos qx− q2 sin qx)

+ bepx(p sin qx+ q cos qx) + cepx sin qx

= epx sin qx[a(p2 − q2) + (bp+ c)] + epx cos qx[2apq + bq]

= epx sin(qx)

[
a

(
b2

4a2
− 4ac− b2

4a2

)
+ b

(
−b
2a

)
+ c

]
+ epx cos qx

[{
2a

(
−b
2a

)
+ b

}√
4ac− b2

]
= epx sin(qx)

[
b2 − 2ac+ b2 + 2ac

2a

]
+ epx cos(qx)[0]

= 0.

Therefore y1 = epx sin(qx) is a solution of (1). Similarly, we can show
that y2 = epx cos qx is a solution of (1). We leave this as an exercise.
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Remark 16 Use Integral Tables or computer algebra in evaluating the in-
definite integrals as needed.

Example 4.4.3 Solve the differential equations for y(t).

(i) y′′ − 5y′ + 14y = 0

(ii) y′′ − 6y′ + 9y = 0

(iii) y′′ − 4y′ + 5y = 0

We let y = emt. We then solve for m and determine the solution. We observe
that y′ = memt, y′′ = m2emt.

Part (i) By substituting y = emt in the equation we get

m2emt − 5memt + 14emt = emt(m2 − 5m+ 14) = 0→
m2 − 5m+ 14 = 0 = (m− 7)(m+ 2)→ m = 7,−2.

Therefore,
y(t) = Ae−2t +Be7t.

Part (ii) Again, by substituting y = emt, we get

m2emt − 6memt + 9emt = 0

m2 − 6m+ 9 = (m− 3)2 = 0

m = 3, 3.

The solution is
y(t) = Ae3t +Bte3t.

Part (iii) By substituting y = emt, we get

m2emt − 4memt + 5emt = emt(m2 − 4m+ 5) = 0→
m2 − 4m+ 5 = 0

m =
4±
√

16− 20

2
= 2± 1i.

The general solution is

y(t) = e2t(A cos t+B sin t).
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Example 4.4.4 Solve the differential equation for y(t) where y(t) satisfies
the conditions

y′′(t)− 2y′(t)− 15y(t) = 0; y(0) = 1, y′(0) = −1.

We assume that y(t) = emt. By substitution we get the characteristic equa-
tion:

m2 − 2m− 15 = 0, m = 5,−3.

The general solution is
y(t) = Ae−3t +Be5t.

We now impose the additional conditions y(0) = 1, y′(0) = −1.

y(t) = Ae−3t +Be5t

y′(t) = −3Ae−3t + 5Be5t

y(0) = A+B = 1

y′(0) = −3A+ 5B = −1

On solving these two equations simultaneously, we get

A =
3

4
, B =

1

4
.

Then the exact solution is

y(t) =
3

4
e−3t +

1

4
e5t.

Exercises 4.4 Solve for y(t) from each of the following:

1. y′′ − y′ − 20y = 0

2. y′′ − 8y′ + 16y = 0

3. y′′ + 9y′ + 20y = 0

4. y′′ + 4y′ + 4 = 0

5. y′′ − 8y′ + 12y = 0

6. y′′ − 6y′ + 10y = 0
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7. y′ − y′ − 6y = 0, y(0) = 10, y′(0) = 15

8. y′′ − 4y′ + 4y − 0, y(0) = 4, y′(0) = 8

9. y′′ + 8y′ + 12y = 0, y(0) = 1, y′(0) = 3

10. y′′ + 6y′ + 10y = 0, y(0) = 5, y′(0) = 7

11. y′′ − 4y = 0, y(0) = 1, y′(0) = −1

12. y′′ − 9y = 0, y(0) = −1, y′(0) = 1

13. y′′ + 9y = 0, y(0) = 2, y′(0) = 3

14. y′′ + 4y = 0, y(0) = −1, y′(0) = 2

15. y′′ − 3y′ + 2y = 0, y(0) = 2, y′(0) = −2

16. y′′ − y′ − 6y = 0, y(0) = 6, y′(0) = 5

17. y′′ + 4y′ + 4y = 0, y(0) = 1, y′(0) = 4

18. y′′ − 6y′ + 9y = 0, y(0) = 1, y′(0) = −1

19. y′′ + 6y′ + 13y = 0, y(0) = 1, y′(0) = 2

20. y′′ − 3y′ + 2y = 0

21. y′′ + 3y′ + 2y = 0

22. y′′ +m2y = 0

23. y′′ −m2y = 0

24. y′′ + 2my′ +m2y2 = 0

25. y′′ + 2my′ + (m2 + 1)y = 0

26. y′′ − 2my′ + (m2 + 1)y = 0

27. y′′ + 2my′ + (m2 − 1)y = 0

28. y′′ − 2my′ + (m2 − 1)y = 0

29. 9y′′ − 12y′ + 4y = 0

30. 4y′′ + 4y′ + y = 0
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4.5 Linear Non-Homogeneous Second Order

Differential Equations

Theorem 4.5.1 (Variation of Parameters) Consider the equations

y′′ + p(x)y′ + q(x)y = r(x) (1)

y′′ + p(x)y′ + q(x)y = 0. (2)

Suppose that y1 and y2 are any two linearly independent solutions of (2).
Then the general solution of (1) is

y(x) = c1y1(x) + c2y2(x) +

[
y2(x)

∫
y1(x)r(x)

W (y1, y2)
dx− y1(x)

∫
y2(x)r(x)

W (y1, y2)
dx

]
.

Proof. It is already shown that c1y1(x)+c2y2(x) is the most general solution
of the homogeneous equation (2), where c1 and c2 are arbitrary constants.
We observe that the difference of any two solutions of (1) is a solution of (2).

Suppose that y∗(x) is any solution of (1). We wish to find two functions,
u1 and u2, such that

y∗(x) = u1(x)y1(x) + u2(x)y2(x). (3)

By differentiation of (3), we get

y∗′(x) = (u′1y1 + u′2y2) + (u1y
′
1 + u2y

′
2). (4)

We impose the following condition (5) on u1 and u2:

u′1y1 + u′2y2 = 0. (5)

Then

y∗′(x) = u1y
′
1 + u2y

′
2

y∗′′(x) = (u1y
′′
1 + u2y

′′
2) + u′1y

′
1 + u′2y

′
2.

Since y∗(x) is a solution of (1), we get

r(x) = y∗′′ + p(x)y∗′ + q(x)y∗

= (u1y
′′
1 + u2y

′′
2) + (u′1y

′
1 + u′2y

′
2) + p(x)[u1y

′
1 + u2y

′
2]

+ q(x)(u1y1 + u2y2)

= u1[y′′1 + p(x)y′1 + q(x)y1] + u2[y′′2 + p(x)y′2 + q(x)y2]

+ (u′1y1 + u′2y
′
2)

= u′1y
′
1 + u′2y

′
2.
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Hence, another condition on u1 and u2 is

u′1y
′
1 + u′2y

′
2 = r(x). (6)

By solving equations (5) and (6) simultaneously for u′1 and u′2, we get

u′1 =
−y2r(x)

y1y′2 − y2y′1
and u′2(x) =

y1r(x)

y1y′2 − y2y′1
. (7)

The denominator of the solution (7) is the Wronskian of y1 and y2, which is
not zero for any x since y1 and y2 are linearly independent by assumption.
By taking the indefinite integrals in equation (7), we obtain u1 and u2.

u1(x) = −
∫

y2(x)r(x)

W (y1, y2)
dx and u2(x) =

∫
y1(x)r(x)

W (y1, y2)
dx.

By substituting these values in (3), we get a particular solution

y∗(x) = y2u2 + y1u1

= y2(x)

∫
y1(x)r(x)

W (y1, y2)
dx− y1(x)

∫
y2(x)r(x)

W (y1, y2)
dx.

This solution y∗(x) is called a particular solution of (1). To get the general
solution of (1), we add the general solution c1y1(x) + c2 y2(x) of (2) to the
particular solution of y∗(x) and get

y(x) = (c1y1(x) + c2y2(x)) +

{
y2(x)

∫
y1(x)r(x)

W (y1, y2)
dx− y1(x)

∫
y2(x)r(x)

W (y1, y2)
dx

}
.

This completes the proof of this theorem.

Remark 17 The general solution of (2) is called the complementary solution
of (1) and is denoted yc(x).

yc(x) = c1y1(x) + c2y2(x).

The particular solution y∗ of (1) is generally written as yp.

yp = y2

∫
r(x)y1(x)

W (y1, y2)
dx− y1

∫
r(x)y2(x)

W (y1, y2)
dx.

The general solution y(x) of (1) is the sum of yc and yp,

y = yc(x) + yp(x).
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Example 4.5.1 Solve the differential equation

y′′ + 8y′ + 12y = e−3x.

We find the general solution of the homogeneous equation

y′′ + 8y′ + 12y = 0.

We let y = emx be a solution. Then y′ = memx, y′′ = m2emx and

m2emx + 8memx + 12emx = 0

m2 + 8m+ 12 = 0 m = −6,−2.

So,
yc(x) = Ae−6x +Be−2x

is the complementary solution. We compute the Wronskian

W (e−6x, e−2x) = e−6x(−2)e−2x − e−2x(−6)e−6x

= e−8x(−2 + 6)

= 4e−8x

6= 0.

By Theorem 4.4.1, the particular solution is given by

yp = e−2x

∫
e−6x · e−3x

4e−8x
dx− e−6x

∫
e−2x · e−3x

4e−8x
dx

= e−2x

∫
1

4
e−xdx− e−6x

∫
1

4
e3xdx

= −e−2x

(
1

4
e−x
)
− e−6x

(
1

4
e3x

)
= −1

4
e−3x − 1

12
e−3x

= −1

3
e−3x.

The complete solution is the sum of the complementary solution yc and the
particular solution yp.

y(t) = Ae−6x +Be−2x − 1

3
e−3x.
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Exercises 4.5 Find the complementary, particular and the complete solu-
tion for each of the following. Use tables of integrals or computer algebra to
do the integrations, if necessary.

1. y′′ + 4y = sin(3x) 2. y′′ − 9y = e2x

3. y′′ + 9y = cos 2x 4. y′′ − 4y = e−x

5. y′′ − y = xex 6. y′′ − 5y′ + 6y = 3e4x

7. y′′ − 4y′ + 4y = e−x 8. y′′ + 5y′ + 4y = 2ex

9. my′′ − py′ = mg 10. y′′ + 5y′ + 6y = x2e2x

In exercises 11–20, compute the complete solution for y.

11. y′′ + y = 4x, y(0) = 2, y′(0) = 1

12. y′′ − 9y = ex, y(0) = 1, y′(0) = 5

13. y′′ − 2y′ − 3y = 4, y(0) = 2, y′(0) = −1

14. y′′ − 3y′ + 2y = 4x

15. y′′ + 4y = sin 2x

16. y′′ − 4y = e2x

17. y′′ − 4y = e−2x

18. y′′ + 4y = cos 2x

19. y′′ + 9y = 2 sin 3x+ 4 cos 3x

20. y′′ + 4y′ + 5y = sinx− 2 cosx



Chapter 5

The Definite Integral

5.1 Area Approximation

In Chapter 4, we have seen the role played by the indefinite integral in find-
ing antiderivatives and in solving first order and second order differential
equations. The definite integral is very closely related to the indefinite inte-
gral. We begin the discussion with finding areas under the graphs of positive
functions.

Example 5.1.1 Find the area bounded by the graph of the function y =
4, y = 0, x = 0, x = 3.

graph

From geometry, we know that the area is the height 4 times the width 3 of
the rectangle.

Area = 12.

Example 5.1.2 Find the area bounded by the graphs of y = 4x, y = 0, x =
0, x = 3.

183
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graph

From geometry, the area of the triangle is
1

2
times the base, 3, times the

height, 12.

Area = 18.

Example 5.1.3 Find the area bounded by the graphs of y = 2x, y = 0, x =
1, x = 4.

graph

The required area is covered by a trapezoid. The area of a trapezoid is
1

2
times the sum of the parallel sides times the distance between the parallel
sides.

Area =
1

2
(2 + 8)(3) = 15.

Example 5.1.4 Find the area bounded by the curves y =
√

4− x2, y =
0, x = −2, x = 2.

graph

By inspection, we recognize that this is the area bounded by the upper half
of the circle with center at (0, 0) and radius 2. Its equation is

x2 + y2 = 4 or y =
√

4− x2, −2 ≤ x ≤ 2.

Again from geometry, we know that the area of a circle with radius 2 is
πr2 = 4π. The upper half of the circle will have one half of the total area.
Therefore, the required area is 2π.
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Example 5.1.5 Approximate the area bounded by y = x2, y = 0, x = 0,
and x = 3. Given that the exact area is 9, compute the error of your
approximation.

Method 1. We divide the interval [0, 3] into six equal subdivisions at the

points 0,
1

2
, 1,

3

2
,
5

2
and 2. Such a subdivision is called a partition of [0, 3].

We draw vertical segments joining these points of division to the curve. On
each subinterval [x1, x2], the minimum value of the function x2 is at x2

1.
The maximum value x2

2 of the function is at the right hand end point x2.
Therefore,

graph

The lower approximation, denoted L, is given by

L = 02 · 1

2
+ 12 · 1

2
+

(
3

2

)2

· 1

2
+ (2)2 · 1

2
+

(
5

2

)2

· 1

2

=
1

2
·
[
0 + 1 +

9

4
+ 4 +

25

4

]
=

27

4
≈ 8 · 75.

This approximation is called the left-hand approximation of the area. The
error of approximation is −0.25.

The Upper approximation, denoted U , is given by

U =

(
1

2

)2

· 1

2
+ 12 · 1

2
+

(
3

2

)2

· 1

2
+ (2)2 · 1

2
+

(
5

2

)2

· 1

2
+ (3)2 · 1

2

=
1

2

[
1

4
+ 1 +

9

4
+ 4 +

25

4
+ 9

]
=

1

2

[
91

4

]
=

91

8
≈ 11 · 38.
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The error of approximation is +2.28.

This approximation is called the right-hand approximation.

Method 2. (Trapezoidal Rule) In this method, for each subinterval [x1, x2],
we join the point (x1, x

2
1) with the point (x2, x

2
2) by a straight line and find

the area under this line to be a trapezoid with area
1

2
(x2−x1)(x2

1 +x2
2). We

add up these areas as the Trapezoidal Rule approximation, T , that is given
by

T =
1

2

(
1

2
− 0

)(
02 +

(
1

2

)2
)

+
1

2

(
1− 1

2

)(
12 +

(
1

2

)2
)

+
1

2

(
3

2
− 1

)((
3

2

)2

+ 12

)
+

1

2

(
2− 3

2

)(
22 +

(
3

2

)2
)

+
1

2

(
5

2
− 2

)((
5

2

)2

+ 22

)
+

1

2

(
3− 5

2

)(
32 +

(
5

2

)2
)

=
1

4

[
02 + 2 ·

(
1

2

)2

+ 2(12) + 2 ·
(

3

2

)2

+ 2(2)2 + 2 ·
(

5

2

)2

+ 32

]

=
1

4

[
1 + 2 +

9

2
+ 8 +

25

2
+ 9

]
=

37

4
= 9 · 25.

The error of this Trapezoidal approximation is +0.25.

Method 3. (Simpson’s Rule) In this case we take two intervals, say [x1, x2]∪
[x2, x3], and approximate the area over this interval by

1

6
[f(x1) + 4f(x2) + f(x3)] · (x3 − x1)

and then add them up. In our case, let x0 = 0, x1 =
1

2
, x2 = 1, x3 =

3

2
, x4 = 2, x5 =

5

2
and x6 = 3. Then the Simpson’s rule approximation, S,
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is given by

S =
1

6

[
02 + 4 ·

(
1

2

)2

+ (1)2

]
· (1) +

1

6

[
(1)2 + 4 ·

(
3

2

)2

+ 22

]
(1)

+
1

6

[
22 + 4 ·

(
5

2

)2

+ 32

]
· (1)

=
1

6

[
02 + 4

(
1

2

)2

+ 2 · 12 + 4 ·
(

3

2

)2

+ 2 · 22 + 4 ·
(

5

2

)2

+ 32

]
=

54

6
= 9 = Exact Value!

For positive functions, y = f(x), defined over a closed and bounded interval
[a, b], we define the following methods for approximating the area A, bounded
by the curves y = f(x), y = 0, x = a and x = b. We begin with a common
equally-spaced partition,

P = {a = x0 < x1 < x2 < x3 < . . . < xn = b},

such that xi = a+
b− a
n

i, for i = 0, 1, 2, . . . , n.

Definition 5.1.1 (Left-hand Rule) The left-hand rule approximation for A,
denoted L, is defined by

L =
b− a
n
· [f(x0) + f(x1) + f(x2) + · · ·+ f(xn−1)].

Definition 5.1.2 (Right-hand Rule) The right-hand rule approximation for
A, denoted R, is defined by

R =
b− a
n
· [f(x1) + f(x2) + f(x3) + · · ·+ f(xn)].

Definition 5.1.3 (Mid-point Rule) The mid-point rule approximation for
A, denoted M , is defined by

M =
b− a
n

[
f

(
x0 + x1

2

)
+ f

(
x1 + x2

2

)
+ · · ·+ f

(
xn−1 + xn

2

)]
.
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Definition 5.1.4 (Trapezoidal Rule) The trapezoidal rule approximation
for A, denoted T , is defined by

T =
b− a
n

[
1

2
(f(x0) + f(x1)) +

1

2
(f(x1) + f(x2)) + · · ·+ 1

2
(f(xn−1) + f(xn))

]
=
b− a
n

[
1

2
f(x0) + f(x1) + f(x2) + · · ·+ f(xn−1) +

1

2
f(xn)

]
.

Definition 5.1.5 (Simpson’s Rule) The Simpson’s rule approximation for
A, denoted S, is defined by

S =
b− a
n

[
1

6

{
f(x0) + 4 f

(
x0 + x1

2

)
+ f(x1)

}
+

1

6

{
f(x1) + 4 f

(
x1 + x2

2

)
+ f(x2)

}
+ · · ·+ 1

6

{
f(xn−1 + 4 f

(
xn−1 + xn

2

)
+ f(xn)

}]
=

(
b− a
n

)
· 1

6
·
[
f(x0) + 4 f

(
x0 + x1

2

)
+ 2 f(x1) + 4 f

(
x1 + x2

2

)
+ · · · 2 f(xn−1) + 4 f

(
xn−1 + xn

2

)
+ f(xn)

]
.

Examples

Exercises 5.1

1. The sum of n terms a1, a2, · · · , an is written in compact form in the so
called sigma notation

n∑
k=1

ak = a1 + a2 + · · ·+ an.

The variable k is called the index, the number 1 is called the lower limit

and the number n is called the upper limit. The symbol
n∑
k=1

ak is read

“the sum of ak from k = 1 to k = n.”

Verify the following sums for n = 5:
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(a)
n∑
k=1

k =
n(n+ 1)

2

(b)
n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6

(c)
n∑
k=1

k3 =

(
n(n+ 1)

2

)2

(d)
n∑
k=1

2r = 2n+1 = 1

2. Prove the following statements by using mathematical induction:

(a)
n∑
k=1

k =
n(n+ 1)

2

(b)
n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6

(c)
n∑
k=1

k3 =

(
n(n+ 1)

2

)2

(d)
n∑
k=1

2r = 2n+1 − 1

3. Prove the following statements:

(a)
n∑
k=1

(c ak) = c
n∑
k=1

ak

(b)
n∑
k=1

(ak + bk) =
n∑
k=1

ak +
n∑
k=1

bk

(c)
n∑
k=1

(ak − bk) =
n∑
k=1

ak −
n∑
k=1

bk

(d)
n∑
k=1

(a ak + b bk) = a
n∑
k=1

ak + b
n∑
k=1

bk
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4. Evaluate the following sums:

(a)
6∑
i=0

(2i)

(b)
5∑
j=1

(
1

j

)

(c)
4∑

k=0

(1 + (−1)k)2

(d)
5∑

m=2

(3m− 2)

5. Let P = {a = x0 < x1 < x2 < · · · < xn = b} be a partition of [a, b]

such that xk = a+

(
b− a
n

)
k, k = 0, 1, 2, · · · , n. Let f(x) = x2. Let A

denote the area bounded by y = f(x), y = 0, x = 0 and x = 2. Show
that

(a) Left-hand Rule approximation of A is
2

n

n−1∑
k=1

x2
k−1.

(b) Right-hand Rule approximation of A is
2

n

n−1∑
k=1

x2
k.

(c) Mid-point Rule approximation of A is
2

n

n∑
k=1

(
xk−1 + xk

2

)2

.

(d) Trapezoidal Rule approximation of A is
2

n

{
2 +

n−1∑
k=1

x2
k

}
.

(e) Simpson’s Rule approximation of A

1

3n

{
4 + 4

n∑
k=1

(
xk−1 + xk

2

)2

+ 2
n−1∑
k=1

x2
k

}
.
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In problems 6–20, use the function f , numbers a, b and n, and compute the
approximations LH,RH,MP, T, S for the area bounded by y = f(x), y =
0, x = a, x = b using the partition

P = {a = x0 < x1 < · · · < xn = b}, where xk = a+ k

(
b− a
n

)
, and

(a) LH =
b− a
n

n∑
k=1

f(xk−1)

(b) RH =
b− a
n

n∑
k=1

f(xk)

(c) MP =
b− a
n

n∑
k=1

f

(
xn−1 + xk

2

)

(d) T =
b− a
n

{
n−1∑
k=1

f(xk) +
1

2
(f(x0) + f(xn))

}

(e) S =
b− a
6n

{
(f(x0) + f(xn)) + 2

n−1∑
k=1

f(xn) + 4
n∑
k=1

f

(
xk−1 + xk

2

)}
=

1

6
{LH + 4MP +RH}

6. f(x) = 2x, a = 0, b = 2, n = 6

7. f(x) =
1

x
, a = 1, b = 3, n = 6

8. f(x) = x2, a = 0, b = 3, n = 6

9. f(x) = x3, a = 0, b = 2, n = 4

10. f(x) =
1

1 + x
, a = 0, b = 3, n = 6

11. f(x) =
1

1 + x2
, a = 0, b = 1, n = 4

12. f(x) =
1√

4− x2
, a = 0, b = 1, n = 4
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13. f(x) =
1

4− x2
, a = 0, b = 1, n = 4

14. f(x) =
1

4 + x2
, a = 0, b = 2, n = 4

15. f(x) =
1√

4 + x2
, a = 0, b = 2, n = 4

16. f(x) =
√

4 + x2, a = 0, b = 2, n = 4

17. f(x) =
√

4− x2, a = 0, b = 2, n = 4

18. f(x) = sinx, a = 0, b = π, n = 4

19. f(x) = cosx, a = −π
2
, b =

π

2
, n = 4

20. f(x) = sin2 x, a = 0, b = π, n = 4

5.2 The Definite Integral

Let f be a function that is continuous on a bounded and closed interval [a, b].
Let p = {a = x0 < x1 < x2 < . . . < xn = b} be a partition of [a, b], not
necessarily equally spaced. Let

mi = min{f(x) : xi−1 ≤ x ≤ xi}, i = 1, 2, . . . , n;

Mi = max{f(x) : xi−1 ≤ x ≤ xi}, i = 1, 2, . . . , n;

∆xi = xi − xi−1, i = 1, 2, . . . , n;

∆ = max{∆xi : i = 1, 2, . . . , n};
L(p) = m1∆x1 +m2∆x2 + . . .+mn∆xn
U(p) = M1∆xi +M2∆x2 + . . .+Mn∆xn.

We call L(p) the lower Riemann sum. We call U(p) the upper Riemann
sum. Clearly L(p) ≤ U(p), for every partition. Let

Lf = lub{L(p) : p is a partition of [a, b]}
Uf = glb{U(p) : p is a partition of [a, b]}.
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Definition 5.2.1 If f is continuous on [a, b] and Lf = Uf = I, then we say
that:

(i) f is integrable on [a, b];

(ii) the definite integral of f(x) from x = a to x = b is I;

(iii) I is expressed, in symbols, by the equation

I =

∫ b

a

f(x)dx;

(iv) the symbol“
∫

” is called the “integral sign”; the number “a” is called
the “lower limit”; the number “b” is called the “upper limit”; the func-
tion “f(x)” is called the “integrand”; and the variable “x” is called the
(dummy) “variable of integration.”

(v) If f(x) ≥ 0 for each x in [a, b], then the area, A, bounded by the curves
y = f(x), y = 0, x = a and x = b, is defined to be the definite integral
of f(x) from x = a to x = b. That is,

A =

∫ b

a

f(x)dx.

(vi) For convenience, we define∫ a

a

f(x)dx = 0,

∫ a

b

f(x)dx = −
∫ b

a

f(x)dx.

Theorem 5.2.1 If a function f is continuous on a closed and bounded in-
terval [a, b], then f is integrable on [a, b].

Proof. See the proof of Theorem 5.6.3.

Theorem 5.2.2 (Linearity) Suppose that f and g are continuous on [a, b]
and c1 and c2 are two arbitrary constants. Then
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(i)

∫ b

a

(f(x) + g(x))dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx

(ii)

∫ b

a

(f(x)− g(x))dx =

∫ b

a

f(x)dx−
∫ b

a

g(x)dx

(iii)

∫ b

a

c1f(x)dx = c1

∫ b

a

f(x)dx,

∫ b

a

c2g(x)dx = c2

∫ b

a

g(x)dx and∫ b

a

(c1f(x) + c2g(x))dx = c1

∫ b

a

f(x)dx+ c2

∫ b

a

g(x)dx

Proof.
Part (i) Since f and g are continuous, f + g is continuous and hence by
Theorem 5.2.1 each of the following integrals exist:∫ b

a

f(x)dx,

∫ b

a

g(x)dx, and

∫ b

a

(f(x) + g(x))dx.

Let P = {a = x0 < x1 < x2 < · · · < xn−1 < xn = b}. For each i, there exist
number c1, c2, c3, d1, d2, and d3 on [xi−1, xi] such that

f(c1) = absolute minimum of f on [xi−1, xi],
g(c2) = absolute minimum of f on [xi−1, xi],
f(c3) + g(c3) = absolute minimum of f + g on [xi−1, xi],
f(d1) = absolute maximum of f on [xi−1, xi],
g(d2) = absolute maximum of g on [xi−1, xi],
f(d3) + g(d3) = absolute maximum of f + g on [xi−1, xi].
It follows that

f(c1) + g(c2) ≤ f(c3) + g(c3) ≤ f(d3) + g(d3) ≤ f(d1) + g(d2)

Consequently,

Lf + Lg ≤ L(f+g) ≤ U(f+g) ≤ Uf + Ug (Why?)

Since f and g are integrable,

Lf = Uf =

∫ b

a

f(x)dx; Lg = Ug =

∫ b

a

g(x)dx.

By the squeeze principle,

L(f+g) = U(f+g) =

∫ b

a

(f(x) + g(x))dx



5.2. THE DEFINITE INTEGRAL 195

and ∫ b

a

[f(x) + g(x)]dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx.

This completes the proof of Part (i) of this theorem.

Part (iii) Let k be a positive constant and let F be a function that is con-
tinuous on [a, b]. Let P = {a = x0 < x1 < x2 < · · · < xn−1 < xn = b} be
any partition of [a, b]. Then for each i there exist numbers ci and di such
that F (ci) is the absolute minimum of F on [xi−1, xi] and F (di) is absolute
maximum of F on [xi−1, xi]. Since k is a positive constant,

kF (ci) = absolute minimum of kF on [xi−1, xi],

kF (di) = absolute maximum of kF on [xi−1, xi],

−kF (di) = absolute minimum of (−k)F on [xi−1, xi],

−kF (ci) = absolute maximum of (−k)F on [xi−1, xi].

Then

L(P ) = F (c1)∆x1 + F (c2)∆x2 + · · ·+ F (cn)∆xn,

U(P ) = F (d1)∆x1 + F (d2)∆x2 + · · ·+ F (dn)∆xn,

kL(P ) = (kF )(c1)∆x1 + (kF )(c2)∆x2 + · · ·+ (kF )(cn)∆xn,

kU(P ) = (kF )(d1)∆x1 + (kF )(d2)∆x2 + · · ·+ (kF )(dn)∆xn,

−kU(P ) = (−kF )(d1)∆x1 + (−kF )(d2)∆x2 + · · ·+ (−kF )(dn)∆xn,

−kL(P ) = (−kF )(c1)∆x1 + (−kF )(c2)∆x2 + · · ·+ (−kF )(cn)∆xn.

Since F is continuous, kF and (−k)F are both continuous and

Lf = Up =

∫ b

a

F (x)dx,

L(kF ) = U(kF ) = k(LF ) = k(UF ) = k

∫ b

a

F (x)dx

L(−kF ) = (−k)UF , U(−kF ) = −kLF ,

and hence

L(−kF ) = U(−kF ) = (−k)

∫ b

a

F (x)dx.
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Therefore,∫ b

a

(c1f(x) + c2g(x)) =

∫ b

a

c1f(x)dx+

∫ b

a

c2g(x)dx (Part (i))

= c1

∫ b

a

f(x)dx+ c2

∫ b

a

g(x)dx (Why?)

This completes the proof of Part (iii) of this theorem.
Part (ii) is a special case of Part (iii) where c1 = 1 and c2 = −1. This
completes the proof of the theorem.

Theorem 5.2.3 (Additivity) If f is continuous on [a, b] and a < c < b,
then ∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx.

Proof. Suppose that f is continuous on [a, b] and a < c < b. Then f is
continuous on [a, c] and on [c, b] and, hence, f is integrable on [a, b], [a, c]
and [c, b]. Let P = {a = x0 < x1 < x2 < · · ·xn = b}. Suppose that
xi−1 ≤ c ≤ xi for some i. Let P1 = {a = x0 < x1 < x2 < · · · < xi−1 ≤ c}
and P2 = {c ≤ xi < xi+1 < · · · < xn = b}. Then there exist numbers
c1, c2, c3, d1, d2, and d3 such that

f(c1) = absolute minimum of f on [xi−1, c],
f(d1) = absolute maximum of f on [xi−1, c],
f(c2) = absolute minimum of f on [c, xi],
f(d2) = absolute maximum of f on [c, xi],
f(c3) = absolute minimum of f on [xi−1, xi],
f(d3) = absolute maximum of f on [xi−1, xi],

Also,

f(c3) ≤ f(c1), f(c3) ≤ f(c2), f(d1) ≤ f(d3) and f(d2) ≤ f(d3).

It follows that

L(P ) ≤ L(P1) + L(P2) ≤ U(P1) + U(P2) ≤ U(P ).

It follows that ∫ b

a

f(x) =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx.

This completes the proof of the theorem.
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Theorem 5.2.4 (Order Property) If f and g are continuous on [a, b] and
f(x) ≤ g(x) for all x in [a, b], then∫ b

a

f(x)dx ≤
∫ b

a

g(x)dx.

Proof. Suppose that f and g are continuous on [a, b] and f(x) ≤ g(x) for
all x in [a, b]. Let P = {a = x0 < x1 < x2 < · · · < xn = b} be a partition of
[a, b]. For each i there exists numbers ci, c

∗
i , di and d∗i such that

f(ci) = absolute minimum of f on [xi−1, xi],
f(di) = absolute maximum of f on [xi−1, xi],
g(c∗i ) = absolute minimum of g on [xi−1, xi],
g(d∗i ) = absolute maximum of g on [xi−1, xi].

By the assumption that f(x) ≤ g(x) on [a, b], we get

f(ci) ≤ g(c∗i ) and f(di) ≤ g(d∗i ).

Hence

Lf ≤ Lg and Uf ≤ Ug.

It follows that ∫ b

a

f(x)dx ≤
∫ b

a

g(x)dx.

This completes the proof of this theorem.

Theorem 5.2.5 (Mean Value Theorem for Integrals) If f is continuous
on [a, b], then there exists some point c in [a, b] such that∫ b

a

f(x)dx = f(c)(b− a).

Proof. Suppose that f is continuous on [a, b], and a < b. Let
m = absolute minimum of f on [a, b], and
M = absolute maximum of f on [a, b].

Then, by Theorem 5.2.4,

m(b− a) ≤
∫ b

a

m dx ≤
∫ b

a

f(x)dx ≤
∫ b

a

M dx = M(b− a)
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and

m ≤ 1

b− a

∫ b

a

f(x)dx ≤M.

By the intermediate value theorem for continuous functions, there exists some
c such that

f(c) =
1

b− a

∫ b

a

f(x)dx

and

∫ b

a

f(x)dx = f(c)(b− a).

For a = b, take c = a. This completes the proof of this theorem.

Definition 5.2.2 The number f(c) given in Theorem 5.2.6 is called the av-
erage value of f on [a, b], denoted fav[a, b]. That is

fav[a, b] =
1

b− a

∫ b

a

f(x)dx.

Theorem 5.2.6 (Fundamental Theorem of Calculus, First Form) Suppose
that f is continuous on some closed and bounded interval [a, b] and

g(x) =

∫ x

a

f(t)dt

for each x in [a, b]. Then g(x) is continuous on [a, b], differentiable on (a, b)
and for all x in (a, b), g′(x) = f(x). That is

d

dx

[∫ x

a

f(t)dt

]
= f(x).
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Proof. Suppose that f is continuous on [a, b] and a < x < b. Then

g′(x) = lim
h→0

1

h
[g(x+ h)− g(x)]

= lim
h→0

1

h

[∫ x+h

a

f(t)dt−
∫ x

a

f(t)dt

]
= lim

h→0

1

h

[∫ x

a

f(t)dt+

∫ x+h

x

f(t)dt−
∫ x

a

f(t)dt

]
(Why?)

= lim
h→0

1

h

[∫ x+h

x

f(t)dt

]
= lim

h→0

1

h
[f(c)(x+ h− x)] by Theorem 5.2.5)

= lim
h→0

f(c)

for some c between x and x+ h.
Since f is continuous on [a, b] and c is between x and x + h, it follows

that

g′(x) = lim
h→0

f(c) = f(x)

for all x such that a < x < b.
At the end points a and b, a similar argument can be used for one sided

derivatives, namely,

g′(a+) = lim
h→0+

g(x+ h)− g(x)

h

g′(b−) = lim
h→0−

g(x+ h)− g(x)

h
.

We leave the end points as an exercise. This completes the proof of this
theorem.

Theorem 5.2.7 (Fundamental Theorem of Calculus, Second Form) If f
and g are continuous on a closed and bounded interval [a, b] and g′(x) = f(x)
on [a, b], then ∫ b

a

f(x)dx = g(b)− g(a).

We use the notation: [g(x)]ba = g(b)− g(a).
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Proof. Let f and g be continuous on the closed and bounded interval [a, b]
and for each x in [a, b], let

G(x) =

∫ x

a

f(t)dt.

Then, by Theorem 5.2.6, G′(x) = f(x) on [a, b]. Since G′(x) = g(x) for all x
on [a, b], there exists some constant C such that

G(x) = g(x) + C

for all x on [a, b]. Since G(a) = 0, we get C = −g(a). Then∫ b

a

f(x)dx = G(b)

= g(b) + C

= g(b)− g(a).

This completes the proof of Theorem 5.2.7.

Theorem 5.2.8 (Leibniz Rule) If α(x) and β(x) are differentiable for all
x and f is continuous for all x, then

d

dx

[∫ β(x)

α(x)

f(t)dt

]
= f(β(x)) · β′(x)− f(α(x)) · α′(x).

Proof. Suppose that f is continuous for all x and α(x) and β(x) are differ-
entiable for all x. Then

d

dx

[∫ β(x)

α(x)

f(t)dt

]
=

d

dx

[∫ 0

α(x)

f(t)dt+

∫ β(x)

0

f(t)dt

]

=
d

dx

[∫ β(x)

0

f(t)dt−
∫ α(x)

0

f(t)dt

]

=
d

d(β(x))

(∫ β(x)

0

f(t)dt

)
· d(β(x))

dx
− d

d(α(x))

(∫ α(x)

0

f(x)dt

)
d(α(x))

dx

= f(β(x)) β′(x)− f(α(x))α′(x) (by Theorem 5.2.6)

This completes the proof of Theorem 5.2.8.
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Example 5.2.1 Compute each of the following definite integrals and sketch
the area represented by each integral:

(i)

∫ 4

0

x2dx (ii)

∫ π

0

sinx dx

(iii)

∫ π/2

−π/2
cosx dx (iv)

∫ 10

0

exdx

(v)

∫ π/3

0

tanx dx (vi)

∫ π/2

π/6

cotx dx

(vii)

∫ π/4

−π/4
sec x dx (viii)

∫ 3π/4

π/4

csc x dx

(xi)

∫ 1

0

sinhx dx (x)

∫ 1

0

coshx dx

We note that each of the functions in the integrand is positive on the re-
spective interval of integration, and hence, represents an area. In order to
compute these definite integrals, we use the Fundamental Theorem of Cal-
culus, Theorem 5.2.2. As in Chapter 4, we first determine an anti-derivative
g(x) of the integrand f(x) and then use∫ b

a

f(x)dx = g(b)− g(a) = [g(x)]ba .

graph

(i)

∫ 4

0

x2dx =

[
x3

3

]4

0

=
64

3
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graph

(ii)

∫ π

0

sinx dx = [− cosx]π0 = 1− (−1) = 2

graph

(iii)

∫ π/2

−π/2
cosx dx = [sinx]

π/2
−π/2 = 1− (−1) = 2

graph

(iv)

∫ 10

0

ex dx = [ex]10
0 = e10 − e0 = e10 − 1

graph

(v)

∫ π/3

0

tanx dx = [ln | sec x|]π/30 = ln
∣∣∣sec

(π
3

)∣∣∣ = ln 2

graph
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(vi)

∫ π/2

π/6

cotx dx = [ln | sinx|]π/2π/6 = ln(1)− ln

(
1

2

)
= ln 2

graph

(vii)

∫ π/4

−π/4
sec x dx = [ln | sec x+ tanx|]π/4−π/4 = ln |

√
2 + 1| − ln |

√
2− 1|

graph

(viii)

∫ 3π/4

π/4

csc x dx = [− ln | csc x+ cotx|]3π/4π/4

= − ln |
√

2− 1|+ ln |
√

2 + 1|

graph

(ix)

∫ 1

0

sinhx dx = [coshx]10 = cosh 1− cosh 0 = cosh 1− 1

graph
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(x)

∫ 1

0

coshx dx = [sinhx]10 = sinh 1

graph

Example 5.2.2 Evaluate each of the following integrals:

(i)

∫ 10

1

1

x
dx (ii)

∫ π/2

0

sin(2x)dx

(iii)

∫ π/6

0

cos(3x)dx (iv)

∫ 2

0

(x4 − 3x2 + 2x− 1)dx

(v)

∫ 3

0

sinh(4x)dx (vi)

∫ 4

0

cosh(2x)dx

(i) Since
d

dx
(ln |x|) =

1

x
,

∫ 10

1

1

x
dx = [ln |x|]10

1 = ln(10)

(ii) Since
d

dx

(
−1

2
cos(2x)

)
= sin(2x),

∫ π/2

0

sin 2x dx =

[
−1

2
cos(2x)

]π/2
0

=
1

2
+

1

2
= 1.

(iii)

∫ π/6

0

cos(3x) =

[
1

3
sin(3x)

]π/6
0

=
1

3
sin
(π

2

)
=

1

3
.
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(iv)

∫ 2

0

(x4 − 3x2 + 2x− 1)dx =

[
1

5
x5 − x3 + x2 − x

]2

0

=

(
32

5
− 8 + 4− 2

)
− 0

=
2

5
.

(v)

∫ 3

0

sinh(4x)dx =

[
1

4
cosh(4x)

]3

0

=
1

4
cosh(12)− 1

4
cosh(0)

=
1

4
(cosh(12)− 1)

(vi)

∫ 4

0

cosh(2x)dx =

[
1

2
sinh(2x)

]4

0

=
1

2
cosh(8)

Example 5.2.3 Verify each of the following:

(i)

∫ 4

0

x2dx =

∫ 3

0

x2dx+

∫ 4

3

x2dx

(ii)

∫ 4

1

x2dx <

∫ 4

1

x3dx

(iii)
d

dx

[∫ x

0

(t2 + 3t+ 1)dt

]
= x2 + 3x+ 1

(iv)
d

dx

[∫ x3

x2

cos(t)dt

]
= 3x2 cos(x3)− 2x cos(x2).

(v) If f(x) = sinx, then fav[0, π] =
2

π
.

(i)

∫ 4

0

x2dx =

[
x3

3

]4

0

=
64

3∫ 3

0

x2dx+

∫ 4

3

x2dx =

[
x3

3

]3

0

+

[
x3

3

]4

3
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=

(
27

3
− 0

)
+

(
64

3
− 27

3

)
=

64

3
.

Therefore, ∫ 4

1

x2dx =

∫ 3

0

x2dx+

∫ 4

3

x2dx.

(ii)

∫ 4

1

x2dx =

[
x3

3

]4

1

=
64

3
− 1

3
= 21∫ 4

1

x3dx =

[
x4

4

]4

1

=

(
64− 1

4

)

Therefore,

∫ 4

1

x2dx <

∫ 4

1

x3dx. We observe that x2 < x3 on (1, 4].

(iii)

∫ x

0

(t2 + 3t+ 1)dt =

[
t3

3
+ 3

t2

2
+ t

]x
0

=
x3

3
+

3

2
x2 + x

d

dx

(
x3

3
+

3

2
x2 + x

)
= x2 + 3x+ 1.

(iv)
d

dx

[∫ x3

x2

cos tdt

]
=

d

dx

[
[sin t]x

3

x2

]

=
d

dx
[sin(x3)− sin(x2)]

= cos(x3) · 3x2 − cos(x2) · 2x

= 3x2 cos(x3)− 2x cos(x2).

Using the Leibniz Rule, we get

d

dx

(∫ x3

x2

cos tdt

)
= cos(x3) · 3x2 − cos(x2) · 2x

= 3x2 cosx3 − 2x cosx2.
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(v) The average value of sinx on [0, π] is given by

1

π − 0

(∫ π

0

sinx dx

)
=

1

π
[− cosx]π0

=
1

π
[−(−1) + 1]

=
2

π
.

Basic List of Indefinite Integrals:

1.

∫
x3dx =

1

4
x4 + c 2.

∫
xndx =

xn+1

n+ 1
+ c, n 6= 1

3.

∫
1

x
dx = ln |x|+ c 4.

∫
sinx dx = − cosx+ c

5.

∫
sin(ax)dx =

−1

a
cos(ax) + c 6.

∫
cosx dx = sinx+ c

7.

∫
cos(ax) dx =

1

a
sin(ax) + c 8.

∫
tanxdx = ln | sec x|+ c

9.

∫
tan(ax) dx =

1

a
ln | sec(ax)|+ c 10.

∫
cotx dx = ln | sinx|+ c

11.

∫
cot(ax) dx =

1

a
ln | sin(ax)|+ c 12.

∫
ex dx = ex + c

13.

∫
e−x dx = −e−x + c 14.

∫
eax dx =

1

a
eax + c

15.

∫
sinhx dx = coshx+ c 16.

∫
coshx dx = sinhx+ c

17.

∫
tanhx dx = ln | coshx|+ c 18.

∫
cothx dx = ln | sinhx|+ c

19.

∫
sinh(ax) dx =

1

a
cosh(ax) + c 20.

∫
cosh(ax) dx =

1

a
sinh(ax) + c
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21.

∫
tanh(ax) dx =

1

a
ln | cosh ax|+ c 22.

∫
coth(ax) dx =

1

a
ln | sinh(ax)|+ c

23.

∫
sec x dx = ln | sec x+ tanx|+ c 24.

∫
csc x dx = − ln | csc x+ cotx|+ c

25.

∫
sec(ax) dx =

1

a
ln | sec(ax) + tan(ax)|+ c

26.

∫
csc(ax) dx =

−1

a
ln | csc(ax) + cot(ax)|+ c

27.

∫
sec2 x dx = tanx+ c 28.

∫
sec2(ax) dx =

1

a
tan(ax) + c

29.

∫
csc2 x dx = − cotx+ c 30.

∫
csc2(ax) dx =

−1

a
cot(ax) + c

31.

∫
tan2 x dx = tanx− x+ c 32.

∫
cot2 x dx = − cotx− x+ c

33.

∫
sin2 x dx =

1

2
(x− sinx cosx) + c 34.

∫
cos2 x dx =

1

2
(x+ sinx cosx) + c

35.

∫
sec x tanx dx = secx+ c 36.

∫
csc x dx = − csc x+ c

Exercises 5.2 Using the preceding list of indefinite integrals, evaluate the
following:

1.

∫ 5

1

1

t
dt 2.

∫ 3π/2

0

sinx dx 3.

∫ 3π/2

0

cosx dx

4.

∫ 10

0

ex dx 5.

∫ π/10

0

sin(5x) dx 6.

∫ π/6

0

cos(5x) dx
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7.

∫ π/6

π/12

cot(3x) dx 8.

∫ 1

−1

e−xdx 9.

∫ 2

0

e3x dx

10.

∫ 2

0

sinh(2x) dx 11.

∫ 4

0

cosh(3x) dx 12.

∫ 1

0

tanh(2x) dx

13.

∫ 2

1

coth(3x) dx 14.

∫ π/6

π/12

sec(2x)dx 15.

∫ π/6

π/12

csc(2x) dx

16.

∫ π/8

0

sec2(2x) dx 17.

∫ π/6

π/12

csc2(2x) 18.

∫ π/4

0

tan2 x dx

19.

∫ π/4

π/6

cot2 x dx 20.

∫ π

0

sin2 xdx 21.

∫ π/2

−π/2
cos2 x dx

22.

∫ π/4

π/6

sec x tanx dx 23.

∫ π/4

π/6

csc x cotx dx 24.

∫ 2

0

e−3x dx

Compute the average value of each given f on the given interval.

25. f(x) = sinx,

[
−π
2
, π

]
26. f(x) = x1/3, [0, 8]

27. f(x) = cosx,

[
−π
2
,
π

2

]
28. f(x) = sin2 x, [0, π]

29. f(x) = cos2 x, [0, π] 30. f(x) = e−x, [−2, 2]

Compute g′(x) without computing the integrals explicitly.

31. g(x) =

∫ x

0

(1 + t2)2/3dt 32. g(x) =

∫ 4x3

x2

arctan(x) dx

33. g(x) =

∫ x2

x3

(1 + t3)1/3dt 34. g(x) =

∫ arcsinhx

arcsinx

(1 + t2)3/2dt
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35. g(x) =

∫ x

1

(
1

t

)
dt 36. g(x) =

∫ sin 3x

sin 2x

(1 + t2)1/2dt

37. g(x) =

∫ sin(x3)

sin(x2)

(1 + t3)1/3dt 38.

∫ 4x

x

1

1 + t2
dt

39.

∫ x3

x2

arcsin(x) dx 40.

∫ ex

lnx

2tdt

5.3 Integration by Substitution

Many functions are formed by using compositions. In dealing with a com-
posite function it is useful to change variables of integration. It is convenient
to use the following differential notation:

If u = g(x), then du = g′(x) dx.

The symbol “du” represents the “differential of u,” namely, g′(x)dx.

Theorem 5.3.1 (Change of Variable) If f, g and g′ are continuous on an
open interval containing [a, b], then

(i)

∫ b

a

f(g(x)) · g′(x) dx =

∫ g(b)

g(a)

f(u)du

(ii)

∫
f(g(x))g′(x) dx =

∫
f(u)du,

where u = g(x) and du = g′(x) dx.

Proof. Let f, g, and g′ be continuous on an open interval containing [a, b].
For each x in [a, b], let

F (x) =

∫ x

a

f(g(x))g′(x)dx

and

G(x) =

∫ g(x)

g(a)

f(u)du.
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Then, by Leibniz Rule, we have

F ′(x) = f(g(x))g′(x),

and

G′(x) = f(g(x))g′(x)

for all x on [a, b].
It follows that there exists some constant C such that

F (x) = G(x) + C

for all x on [a, b]. For x = a we get

0 = F (a) = G(a) + C = 0 + C

and, hence,

C = 0.

Therefore, F (x) = G(x) for all x on [a, b], and hence∫ b

a

f(g(x))g′(x)dx = F (b)

= G(b)

=

∫ g(b)

g(a)

f(u)du.

This completes the proof of this theorem.

Remark 18 We say that we have changed the variable from x to u through
the substitution u = g(x).

Example 5.3.1

(i)

∫ 2

0

sin(3x) dx =

∫ 6

0

1

3
sinudu =

1

3
[− cosu]60 =

1

3
(1− cos 6),

where u = 3x, du = 3 dx, dx =
1

3
du.
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(ii)

∫ 2

0

3x cos(x2) dx =

∫ 4

0

cosu

(
3

2
du

)
=

3

2
[sinu]40

=
3

2
sin 4,

where u = x2, du = 2x dx, 3x dx =
3

2
du.

(iii)

∫ 3

0

ex
2

x dx =

∫ 9

0

eu
1

2
du =

1

2
[eu]90 =

1

2
(e9 − 1),

where u = x2, du = 2x dx, x dx =
1

2
dx.

Definition 5.3.1 Suppose that f and g are continuous on [a, b]. Then the
area bounded by the curves y = f(x), y = g(x), y = a and x = b is defined
to be A, where

A =

∫ b

a

|f(x)− g(x)| dx.

If f(x) ≥ g(x) for all x in [a, b], then

A =

∫ b

a

(f(x)− g(x)) dx.

If g(x) ≥ f(x) for all x in [a, b], then

A =

∫ b

a

(g(x)− f(x)) dx.

Example 5.3.2 Find the area, A, bounded by the curves y = sinx, y =
cosx, x = 0 and x = π.

graph
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We observe that cosx ≥ sinx on
[
0,
π

4

]
and sinx ≥ cosx on

[π
4
, π
]
. There-

fore, the area is given by

A =

∫ π

0

| sinx− cosx| dx

=

∫ π/4

0

(cosx− sinx) dx+

∫ π

π/4

(sinx− cosx)dx

= [sinx+ cosx]
π/4
0 + [− cosx− sinx]ππ/4

=

(√
2

2
+

√
2

2
− 1

)
+

[
1 +

√
2

2
+

√
2

2

]
= 2
√

2.

Example 5.3.3 Find the area, A, bounded by y = x2, y = x3, x = 0 and
x = 2.

graph

We note that x3 ≤ x2 on [0, 1] and x3 ≥ x2 on [1, 2]. Therefore, by definition,

A =

∫ 1

0

(x2 − x3) dx+

∫ 2

1

(x3 − x2) dx

=

[
1

3
x3 − 1

4
x4

]1

0

+

[
1

4
x4 − 1

3
x3

]2

1

=

(
1

3
− 1

4

)
+

[(
4− 8

3

)
−
(

1

4
− 1

3

)]
=

1

12
+

4

3
+

1

12

=
3

2
.

Example 5.3.4 Find the area bounded by y = x3 and y = x. To find the
interval over which the area is bounded by these curves, we find the points
of intersection.
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graph

x3 = x↔ x3 − x = 0↔ x(x2 − 1) = 0

↔ x = 0, x = 1, x = −1.

The curve y = x is below y = x3 on [−1, 0] and the curve y = x3 is below
the curve y = x on [0, 1]. The required area is A, where

A =

∫ 0

−1

(x3 − x) dx+

∫ 1

0

(x− x3) dx

=

[
1

4
x4 − 1

2
x2

]0

−1

+

[
1

2
x2 − x4

4

]1

0

=

[
1

2
− 1

4

]
+

[
1

2
− 1

4

]
=

1

2

Exercises 5.3 Find the area bounded by the given curves.

1. y = x2, y = x3 2. y = x4, y = x3

3. y = x2, y =
√
x 4. y = 8− x2, y = x2

5. y = 3− x2, y = 2x 6. y = sinx, y = cosx, x =
−π
2
, x =

π

2

7. y = x2 + 4x, y = x 8. y = sin 2x, y = x, x =
π

2

9. y2 = 4x, x− y = 0 10. y = x+ 3, y = cosx, x = 0, x =
π

2

Evaluate each of the following integrals:
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11.

∫
sin 3x dx 12.

∫
cos 5x dx

13.

∫
ex

2

x dx 14.

∫
x sin(x2) dx

15.

∫
x2 tan(x3 + 1) dx 16.

∫
sec2(3x+ 1) dx

17.

∫
csc2(2x− 1) dx 18.

∫
x sinh(x2) dx

19.

∫
x2 cosh(x3 + 1) dx 20.

∫
sec(3x+ 5) dx

21.

∫
csc(5x− 7) dx 22.

∫
x tanh(x2 + 1) dx

23.

∫
x2 coth(x3) dx 24.

∫
sin3 x cosx dx

25.

∫
tan5 x sec2 x dx 26.

∫
cot3 x csc2 x dx

27.

∫
sec3 x tanx dx 28.

∫
csc3 x cotx dx

29.

∫
(arcsinx)4

√
1− x2

dx 30.

∫
(arctanx)3

1 + x2
dx

31.

∫ 1

0

xex
2

dx 32.

∫ π/6

0

sin(3x)dx

33.

∫ π/4

0

cos(4x) dx 34.

∫ 3

0

1

(3x+ 1)
dx

35.

∫ π/2

0

sin3 x cosx dx 36.

∫ π/6

0

cos3(3x) sin 3x dx
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5.4 Integration by Parts

The product rule of differentiation yields an integration technique known as
integration by parts. Let us begin with the product rule:

d

dx
(u(x)v(x)) =

du(x)

dx
v(x) + u(x)

dv(x)

dx
.

On integrating each term with respect to x from x = a to x = b, we get∫ b

a

d

dx
(u(x)v(x)) dx =

∫ b

a

v(x)

(
du(x)

dx

)
dx+

∫ b

a

u(x)

(
dv(x)

dx

)
dx.

By using the differential notation and the fundamental theorem of calculus,
we get

[u(x)v(x)]ba =

∫ b

a

v(x)u′(x) dx+

∫ b

a

u(x)v′(x) dx.

The standard form of this integration by parts formula is written as

(i)

∫ b

a

u(x)v′(x) dx = [u(x)v(x)]ba −
∫ b

a

v(x)u′(x) dx

and

(ii)

∫
udv = uv −

∫
vdu

We state this result as the following theorem:

Theorem 5.4.1 (Integration by Parts) If u(x) and v(x) are two functions
that are differentiable on some open interval containing [a, b], then

(i)

∫ b

a

u(x)v′(x) dx = [u(x)v(x)]ba −
∫ b

a

v(x)u′(x) dx

for definite integrals and

(ii)

∫
udv = uv −

∫
vdu

for indefinite integrals.
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Proof. Suppose that u and v are differentiable on some open interval con-
taining [a, b]. For each x on [a, b], let

F (x) =

∫ x

a

u(x)v′(x)dx+

∫ x

a

v(x)u′(x)dx.

Then, for each x on [a, b],

F ′(x) = u(x)v′(x) + v(x)u′(x)

=
d

dx
(u(x)v(x)).

Hence, there exists some constant C such that for each x on [a, b],

F (x) = u(x)v(x) + C.

For x = a, we get
F (a) = 0 = u(a)v(a) + C

and, hence,
C = −u(a)v(a).

Then, ∫ b

a

u(x)v′(x)dx+

∫ b

a

v(x)u′(x)dx = F (b)

= u(b)v(b) + C

= u(b)v(b)− u(a)v(a).

Consequently,∫ b

a

u(x)v′(x)dx = [u(b)v(b)− u(a)v(a)]−
∫ b

a

v(x)u′(x)dx.

This completes the proof of Theorem 5.4.1.

Remark 19 The “two parts” of the integrand are “u(x)” and “v′(x)dx” or
“u” and “dv”. It becomes necessary to compute u′(x) and v(x) to make the
integration by parts step.

Example 5.4.1 Evaluate the following integrals:
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(i)

∫
x sinx dx (ii)

∫
xe−x dx (iii)

∫
(lnx) dx

(iv)

∫
arcsinx dx (v)

∫
arccosx dx (vi)

∫
x2ex dx

(i) We let u = x and dv = sinx dx. Then du = dx and

v(x) =

∫
sinx dx

= − cosx+ c.

We drop the constant c, since we just need one v(x). Then, by the
integration by parts theorem, we get∫

x sinx dx =

∫
udv

= uv −
∫
vdu

= x(− cosx)−
∫

(− cosx) dx

= −x cosx+ sinx+ c.

(ii) We let u = x, du = dx, dv = e−xdx, v =

∫
e−x dx = −e−x. Then,∫

xe−x dx = x(−e−x)−
∫

(−e−x) dx

= −xe−x − e−x + c.

(iii) We let u = (lnx), du =
1

x
dx, dv = dx, v = x. Then,∫

lnx dx = x lnx−
∫
x · 1

x
dx

= x lnx− x+ c.
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(iv) We let u = arcsinx, du =
1√

1− x2
dx, dv = dx, v = x. Then,∫

arcsinx dx = x arcsinx−
∫

x√
1− x2

dx.

To evaluate the last integral, we make the substitution y = 1−x2. Then,
dy = −2xdx and x dx = (−1/2)du and hence∫

x√
1− x2

dx =

∫
(−1/2)du

u1/2

= −1

2

∫
u−1/2du

= −u1/2 + c

= −
√

1− x2 + c.

Therefore, ∫
arcsinx dx = x arcsinx−

√
1− x2 + c.

(v) Part (v) is similar to part (iv) and is left as an exercise.

(vi) First we let u = x2, du = 2x dx, dv = ex dx, v =

∫
exdx = ex. Then,∫

x2ex dx = x2ex −
∫

2xex dx

= x2ex − 2

∫
xex dx.

To evaluate the last integral, we let u = x, du = dx, dv = exdx, v = ex.
Then ∫

xex dx = xex −
∫
ex dx

= xex − ex + c.

Therefore, ∫
x2ex dx = x2ex − 2(xex − ex + c)

= x2ex − 2xex + 2ex − 2c

= ex(x2 − 2x+ 2) +D.



220 CHAPTER 5. THE DEFINITE INTEGRAL

Example 5.4.2 Evaluate the given integrals in terms of integrals of the
same kind but with a lower power of the integrand. Such formulas are called
the reduction formulas. Apply the reduction formulas for n = 3 and n = 4.

(i)

∫
sinn x dx (ii)

∫
cscm+2 x dx (iii)

∫
cosn x dx (iv)∫

secm+2 x dx

(i) We let

u = (sinx)n−1, du = (n− 1)(sinx)n−2 cosx dx

dv = sinx dx, v =

∫
sinx dx = − cosx.

Then∫
sinn x dx =

∫
(sinx)n−1(sinx dx)

= (sinx)n−1(− cosx)−
∫

(− cosx)(n− 1)(sinx)n−2 cosx dx

= −(sinx)n−1 cosx+ (n− 1)

∫
(sinx)n−2(1− sin2 x) dx

= −(sinx)n−1 cosx+ (n− 1)

∫
(sinx)n−2dx

− (n− 1)

∫
sinn x dx.

We now use algebra to solve the integral as follows:∫
sinn x dx+ (n− 1)

∫
sinn x dx = −(sinx)n−1 cosx+ (n− 1)

∫
sinn−2 x dx

n

∫
sinn x dx = −(sinx)n−1 cosx+ (n− 1)

∫
sinn−2 x dx∫

sinn x dx =
−1

n
(sinx)n−1 cosx+

n− 1

n

∫
sinn−2 x dx . (1)

We have reduced the exponent of the integrand by 2. For n = 3, we get∫
sin3 x dx =

−1

3
(sinx)2 cosx+

2

3

∫
sinx dx

=
−1

3
(sinx)2 cosx

−2

3
cosx+ c.
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For n = 2, we get∫
sin2 x dx =

−1

2
(sinx) cosx+

1

2

∫
1 dx

=
−1

2
sinx cosx+

x

2
+ c

=
1

2
(x− sinx cosx) + c.

For n = 4, we get∫
sin4 x dx =

−1

4
(sinx)3 cosx+

3

4

∫
sin2 x dx

=
−1

4
(sinx)3 cosx+

3

4
· 1

2
(x− sinx cosx) + c.

In this way, we have a reduction formula by which we can compute the
integral of any positive integral power of sinx. If n is a negative integer,
then it is useful to go in the direction as follows:

Suppose n = −m, where m is a positive integer. Then, from equation
(1) we get

n− 1

n

∫
sinn−2 x dx =

1

n
(sinx)n−1 cosx+

∫
(sinx)n dx∫

sinn−2 x dx =
1

n− 1
(sinx)n−1 cosx+

n

n− 1

∫
(sinx)n dx∫

sin−m−2 x dx =
1

−m− 1
(sinx)−m−1 cosx

+
−m
−m− 1

∫
(sinx)−m dx∫

cscm+2 x dx =
−1

m+ 1
(cscx)m cotx+

m

m+ 1

∫
(cscx)m dx . (2)

This gives us the reduction formula for part (iii). Also,∫
cscn x dx =

−1

n− 1
(cscxn−2) cotx+

n− 2

n− 1

∫
(cscxn−2) dx.
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(iii) We can derive a formula by a method similar to part (i). However, let
us make use of a trigonometric reduction formula to get it. Recall that

cosx = sin
(π

2
− x
)

and cos
(π

2
− x
)

= sinx. Then∫
cosn x dx =

∫
sinn

(π
2
− x
)
dx

(
let u =

π

2
− x, du = −dx

)
=

∫
sinn(u)(−du)

= −
∫

sinn udu

= −
[
−1

n
(sinu)n−1 cosu+

n− 1

n

∫
sinn−2 udu

]
(by (1))

=
1

n

(
sin
(π

2
− x
))n−1

cos
(π

2
− x
)

− n− 1

n

∫ (
sin
(π

2
− x
))n−2

d
(π

2
− x
)

∫
cosn x dx =

1

n
(cosx)n−1 sinx+

n− 1

n

∫
cosn−2 x dx . (3)

To get part (iv) we replace n by −m and get∫
cos−m x dx =

1

−m
(cosx)−m−1 sinx+

−m− 1

−m

∫
cos−m−2 x dx∫

secm x dx =
−1

m
(secx)m tanx+

m+ 1

m

∫
secm+2 x dx.

On solving for the last integral, we get∫
secm+2 x dx =

1

m+ 1
(secx)m tanx+

m

m+ 1

∫
secm x dx . (4)

Also,

∫
secn x dx =

1

n− 1
secn−2 x tanx+

n− 2

n− 1

∫
secn−2 x dx.

In parts (ii), (iii) and (vi) we leave the cases for n = 3 and 4 as an exercise.
These are handled as in part (i).

Example 5.4.3 Develop the reduction formulas for the following integrals:
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(i)

∫
tann x dx (ii)

∫
cotn x dx (iii)

∫
sinhn x dx (iv)

∫
coshn x dx

(i) First, we break tan2 x = sec2 x− 1 away from the integrand:

∫
tann x dx =

∫
tann−2 x · tan2 x dx

=

∫
tann−2 x(sec2 x− 1) dx∫

tann x dx =

∫
tann−2 x sec2 x dx−

∫
tann−2 x dx.

For the middle integral, we let u = tanx as a substitution.

∫
tann x dx =

∫
un−2du−

∫
tann−2 x dx

=
un−1

n− 1
−
∫

tann−2 x dx

=
(tanx)n−1

n− 1
−
∫

tann−2 x dx.

Therefore,

∫
tann x dx =

(tanx)n−1

n− 1
−
∫

tann−2 x dx n 6= 1 . (5)∫
tanx dx = ln | sec x|+ c for n = 1.
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(ii) We use the reduction formula tan
(π

2
− x
)

= cotx in (5).∫
cotn x dx =

∫
tann

(π
2
− x
)
dx;

(
let u =

π

2
− x, du = −dx

)
= −

∫
tann u(−du)

= −
∫

tann u du

= −
[

tann−1(u)

n− 1
−
∫

tann−2 u du

]
, n 6= 1

= −cotn−1 x

n− 1
−
∫

cotn−2 x(−dx), n 6= 1

= −cotn−1 x

n− 1
+

∫
cotn−2 x dx, n 6= 1∫

cotx dx = ln | sinx|+ c, for n = 1.

Therefore, ∫
cotn(x) dx = −cotn−1 x

n− 1
+

∫
cotn−2 x dx, n 6= 1 (6)∫

cotx dx = ln | sinx|+ c.

(iii)

∫
sinhn x dx =

∫
(sinhn−1 x)(sinhx dx);u = sinhn−1 x, dv = sinhx dx

= sinhn−1 x coshx−
∫

coshx · (n− 1) sinhn−2 x coshxdx

= sinhn−1 x coshx− (n− 1)

∫
sinhn−2 x(cosh2 x) dx

= sinhn−1 x coshx− (n− 1)

∫
sinhn−2 x(1 + sinh2 x) dx

= sinhn−1 x coshx− (n− 1)

∫
sinhn−2 x dx− (n− 1)

∫
sinhn x dx.
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On bringing the last integral to the left, we get

n

∫
sinhn x dx = sinhn−1 x coshx− (n− 1)

∫
sinhn−2 x dx∫

sinhn x dx =
1

n
sinhn−1 coshx− n− 1

n

∫
sinhn−2 x dx . (7)

(iv)

∫
coshn x dx =

∫
(coshn−1 x)(coshx dx); u = coshn−1 x, dv = coshx dx, v = sinhx

= coshn−1(x) sinhx−
∫

sinhx(n− 1) coshn−2 x sinhxdx

= coshn−1 x sinhx− (n− 1)

∫
coshn−2 x sinh2 x dx

= coshn−1 x sinhx− (n− 1)

∫
coshn−2 x(cosh2 x− 1) dx

= coshn−1 x sinhx− (n− 1)

∫
coshn x dx

+(n− 1)
∫

coshn−2 x dx∫
coshn x dx +(n− 1)

∫
coshn x dx = coshn−1 x sinhx

+(n− 1)
∫

coshn−2 x dx

n

∫
coshn x dx = coshn−1 x sinhx+ (n− 1)

∫
coshn−2 x dx

∫
coshn x dx =

1

n
coshn−1 x sinhx+

n− 1

n

∫
coshn−2 x dx (8)

Example 5.4.4 Develop reduction formulas for the following:
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(i)

∫
xnex dx (ii)

∫
xn lnx dx (iii)

∫
(lnx)n dx

(iv)

∫
xn sinx (v)

∫
xn cosx dx (vi)

∫
eax sin(lnx) dx

(vii)

∫
eax cos(lnx) dx

(i) We let u = xn, dv = ex dx, du = nxn−1dx, v = ex. Then∫
xnex dx = xnex −

∫
ex(nxn−1) dx

= xnex − n
∫
xn−1ex dx.

Therefore, ∫
xnex dx = xnex − n

∫
xn−1ex dx . (9)

(ii) We let u = lnx, du = (1/x) dx, dv = xn dx, v = xn+1/(n+ 1). Then,∫
xn lnx dx = (lnx)

xn+1

n+ 1
−
∫

xn+1

n+ 1
· 1

x
dx

=
xn+1(lnx)

n+ 1
− 1

n+ 1

∫
xn dx

=
xn+1(lnx)

n+ 1
− xn+1

(n+ 1)2
+ c.

Therefore, ∫
xn lnx dx =

xn+1

(n+ 1)2
[(n+ 1) ln(x)− 1] + c . (10)

(iii) We let u = (lnx)n, du = n(lnx)n−1 1

x
dx, dv = dx, v = x. Then,∫

(lnx)n dx = x(lnx)n −
∫
x · n(lnx)n−1 · 1

x
dx

= x(lnx)n − n
∫

(lnx)n−1 dx
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Therefore, ∫
(lnx)n dx = x(lnx)n − n

∫
(lnx)n−1 dx . (11)

(iv) We let u = xn, du = nxn−1dx, dv = sinx dx, v = − cosx. Then,

∫
xn sinx dx = xn(− cosx)−

∫
(− cosx)nxn−1 dx

= −xn cosx = n

∫
xn−1 cosx dx.

(∗)

Again in the last integral we let u = xn−1, du = (n − 1)xn−2dx, dv =
cosx dx, v = sinx. Then

∫
xn−1 cosx dx = xn−1 sinx−

∫
sinx(n− 1)xn−2dx

= xn−1 sinx− (n− 1)

∫
xn−2 sinx dx.

(∗∗)

By substitution, we get the reduction formula∫
xn sinx dx = −xn cosx+ n

[
xn−1 sinx− (n− 1)

∫
xn−2 sinx dx

]
∫
xn sinx dx = −xn cosx+ nxn−1 sinx− n(n− 1)

∫
xn−2 sinx dx(12)

(v) We can use (∗∗) and (∗) in part (iv) to get the following:∫
xn−1 cosx dx = xn−1 sinx− (n− 1)

∫
xn−2 sinx dx by (∗∗)

= xn−1 sinx− (n− 1)

[
−xn−2 cosx+ (n− 2)

∫
xn−3 cosx dx

]
by (∗)
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xn−1 cosx dx = xn−1x+(n−1)xn−2 cosx−(n−1)(n−2)

∫
xn−3 cosx dx.

If we replace n by n+ 1 throughout the last equation, we get∫
xn cosx dx = xn sinx+ nxn−1 cosx− n(n− 1)

∫
xn−2 cosx dx

(13)

(vi) We let dv = eax dx, v =
1

a
eax, u = sin(bx), du = b cos(bx) dx. Then

∫
eax sin(bx) dx =

1

a
eax sin(bx)− b

a

∫
eax cos(bx) dx. (∗ ∗ ∗)

In the last integral, we let dv = eaxdx, v =
1

a
eax, u = cos bx. Then

∫
eax cos(bx) dx =

1

a
eax cos bx+

b

a

∫
eax sin bx dx (∗ ∗ ∗∗)

First we substitute (∗ ∗ ∗∗) into (∗ ∗ ∗) and then solve for∫
eax sin bx dx.

∫
eax sin bx dx =

1

a
eax sin bx− b

a

[
1

a
eax cos bx+

b

a

∫
eax sin bx dx

]
=
eax

a2
(a sin bx− b cos bx)− b2

a2

∫
ax sin bx dx(

1 +
b2

a2

)∫
eax sin bx dx =

eax

a2
(a sin bx− b cos bx dx)

∫
eax sin bx dx =

eax

a2 + b2
(a sin bx− b cos bx) + c . (14)
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(vii) We start with (∗ ∗ ∗∗) and substitute in (14) without the constant c and
get∫

eax cos bx dx =
1

a
eax cos bx+

b

a

∫
eax sin bx dx

=
1

a
eax cos bx+

b

a

[
eax

a2b2
(a sin bx− b cos bx)

]
+ c

= eax
[

1

a
cos bx+

1

a2 + b2

(
b sin bx− b2

a
cos bx

)]
+ c

=
eax

a2 + b2
[b sin b+ a cos bx] + c.

Therefore, ∫
eax cos bx dx =

eax

a2 + b2
[b sin bx+ a cos bx] + c . (15)

Exercises 5.4 Evaluate the following integrals and check your answers by
differentiation. You may use the reduction formulas given in the examples.

1.

∫
xe−2x dx 2.

∫
x3 lnx 3.

∫
dx

x(lnx)4

4.

∫
(lnx)3 dx 5.

∫
e2x sin 3x dx 6.

∫
e3x cos 2x dx

7.

∫
x2 sin 2x dx 8.

∫
x2 cos 3x dx 9.

∫
x ln(x+ 1) dx

10.

∫
arcsin(2x) dx 11.

∫
arccos(2x) dx 12.

∫
arctan(2x) dx

13.

∫
sec3 x dx 14.

∫
sec5 x dx 15.

∫
tan5 x dx

16.

∫
x2 lnx dx 17.

∫
x3 sinx dx 18.

∫
x3 cosx dx
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19.

∫
x sinhx dx 20.

∫
x coshx dx 21.

∫
x(lnx)3dx

22.

∫
x arctanx dx 23.

∫
xarccotx dx 24.

∫
sin3 x dx

25.

∫
cos3 x dx 26.

∫
sin4 x dx 27.

∫
cos4 x dx

28.

∫
sinh2 x dx 29.

∫
cosh2 x dx 30.

∫
sinh3 x dx

31.

∫
x2 sinhx dx 32.

∫
x2 coshx dx 33.

∫
x3 sinhx dx

34.

∫
x3 coshx dx 35.

∫
x2e2xdx 36.

∫
x3e−xdx

37.

∫
x sin(3x) dx 38.

∫
x cos(x+ 1)dx 39.

∫
x ln(x+ 1)dx

40.

∫
x 2xdx 41.

∫
x 102xdx 42.

∫
x2 103xdx

43.

∫
x2(lnx)3dx 44.

∫
arcsinh (3x)dx 45.

∫
arccosh (2x)dx

46.

∫
arctanh (2x)dx 47.

∫
arccoth (3x)dx 48.

∫
xarcsecx dx

50.

∫
xarccscx dx

5.5 Logarithmic, Exponential and Hyperbolic

Functions

With the Fundamental Theorems of Calculus it is possible to rigorously de-
velop the logarithmic, exponential and hyperbolic functions.
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Definition 5.5.1 For each x > 0 we define the natural logarithm of x, de-
noted lnx, by the equation

ln(x) =

∫ x

1

1

t
dt , x > 0.

Theorem 5.5.1 (Natural Logarithm) The natural logarithm, lnx, has the
following properties:

(i)
d

dx
(lnx) =

1

x
> 0 for all x > 0.

The natural logarithm is an increasing, continuous and differentiable
function on (0,∞).

(ii) If a > 0 and b > 0, then ln(ab) = ln(a) + ln(b).

(iii) If a > 0 and b > 0, then ln(a/b) = ln(a) + ln(b).

(iv) If a > 0 and n is a natural number, then ln(an) = n ln a.

(v) The range of lnx is (−∞,∞).

(vi) lnx is one-to-one and has a unique inverse, denoted ex.

Proof.

(i) Since 1/t is continuous on (0,∞), (i) follows from the Fundamental The-
orem of Calculus, Second Form.

(ii) Suppose that a > 0 and b > 0. Then

ln(ab) =

∫ ab

1

1

t
dt

=

∫ a

1

1

t
dt+

∫ ab

a

1

t
dt

= ln a+

∫ b

1

1

au
adu ;

(
u =

1

a
t, du =

1

a
dt

)
= ln a+ ln b.
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(iii) If a > 0 and b > 0, then

ln
(a
b

)
=

∫ (ab )

1

1

t
dt

=

∫ a

1

1

t
dt+

∫ a
b

a

1

t
dt;

(
u =

b

a
t, du =

b

a
dt

)
=

∫ a

1

1

t
dt+

∫ 1

b

1(
au
b

) (a
b
dt
)

=

∫ a

1

1

t
dt−

∫ b

1

1

u
du

= ln a− ln b.

(iv) If a > 0 and n is a natural number, then

ln(an) =

∫ an

1

1

t
dt ; t = un, dt = nun−1du

=

∫ a

1

1

un
· nun−1du

= n

∫ a

1

1

u
du

= n ln a

as required.

(v) From the partition {1, 2, 3, 4, · · · }, we get the following inequality using
upper and lower sum approximations:

graph

13

12
=

1

2
+

1

3
+

1

4
< ln 4 < 1 +

1

2
+

1

3
.
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Hence, ln 4 > 1. ln(4n) = n ln 4 > n and ln 4−n = −n ln 4 < −n. By
the intermediate value theorem, every interval (−n, n) is contained in
the range of lnx. Therefore, the range of lnx is (−∞,∞), since the
derivative of lnx is always positive, lnx is increasing and hence one-to-
one. The inverse of lnx exists.

(vi) Let e denote the number such that ln(e) = 1. Then we define y = ex if
and only if x = ln(y) for x ∈ (−∞,∞), y > 0.

This completes the proof.

Definition 5.5.2 If x is any real number, we define y = ex if and only if
x = ln y.

Theorem 5.5.2 (Exponential Function) The function y = ex has the fol-
lowing properties:

(i) e0 = 1, ln(ex) = x for every real x and
d

dx
(ex) = ex.

(ii) ea · eb = ea+b for all real numbers a and b.

(iii)
ea

eb
= ea−b for all real numbers a and b.

(iv) (ea)n = ena for all real numbers a and natural numbers n.

Proof.

(i) Since ln(1) = 0, e0 = 1. By definition y = ex if and only if x = ln(y) =
ln(ex). Suppose y = ex. Then x = ln y. By implicit differentiation, we
get

1 =
1

y

dy

dx
,
dy

dx
= y = ex.

Therefore,
d

dx
(ex) = ex.
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(ii) Since lnx is increasing and, hence, one-to-one,

ea · eb = ea+b ↔
ln(ea · eb) = ln(ea+b)↔
ln(ea) + ln(eb) = a+ b↔

a+ b = a+ b.

It follows that for all real numbers a and b,

ea · eb = ea+b.

(iii)
ea

eb
= ea−b ↔

ln

(
ea

eb

)
= ln(ea−b)↔

ln(ea)− ln(eb) = a− b↔

a− b = a− b.

It follows that for all real numbers a and b,

ea

eb
= ea−b.

(iv) (ea)n = ena ↔

ln((ea)n) = ln(ena)↔

n ln(ea) = na↔

na = na.

Therefore, for all real numbers a and natural numbers n, we have

(ea)n = ena.
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Definition 5.5.3 Suppose b > 0 and b 6= 1. Then we define the following:

(i) For each real number x, bx = ex ln b.

(ii) y = logb x =
lnx

ln b
.

Theorem 5.5.3 (General Exponential Function) Suppose b > 0 and b 6= 1.
Then

(i) ln(bx) = x ln b, for all real numbers x.

(ii)
d

dx
(bx) = bx ln b, for all real numbers x.

(iii) bx1 · bx2 = bx1+x2, for all real numbers x1 and x2.

(iv)
bx1

bx2
= bx1−x2, for all real numbers x1 and x2.

(v) (bx1)x2 = bx1x2, for all real numbers x1 and x2.

(vi)

∫
bx dx =

bx

ln b
+ c.

Proof.

(i) ln(bx) = ln(ex ln b) = x ln b

(ii)
d

dx
(bx) =

d

dx
(ex ln b) = ex ln b · (ln b) (by the chain rule)

= bx ln b.

(iii) bx1 · bx2 = ex1 ln b · ex2 ln b

= e(x1 ln b+x2 ln b)

= e(x1+x2) ln b

= b(x1+x2)
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(iv)
bx1

bx2
=
ex1 ln b

ex2 ln b

= ex1 ln b−x2 ln b

= e(x1−x2) ln b

= b(x1−x2).

(v) By Definition 5.5.3 (i), we get

(bx1)x2 = ex2 ln(bx1 )

= ex2 ln(ex1 ln b)

= ex2·x1 ln b

= e(x1x2) ln b

= bx1x2 .

(vi) Since
d

dx
(bx) = bx ln b,

we get ∫
bx(ln b) dx = bx + c,

ln b

∫
bx dx = bx + c,∫
ex dx =

bx

ln b
+D,

where D is some constant. This completes the proof.

Theorem 5.5.4 If u(x) > 0 for all x, and u(x) and v(x) are differentiable
functions, then we define

y = (u(x))v(x) = ev(x) ln(u(x)).
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Then y is a differentiable function of x and

dy

dx
=

d

dx
(u(x))v(x) = (u(x))v(x)

[
v′(x) ln(u(x)) + v(x)

u′(x)

u(x)

]
.

Proof. This theorem follows by the chain rule and the product rule as follows

d

dx
[uv] =

d

dx
[ev lnu] = ev lnu

[
v′ lnu+ v

u′

u

]
= uv

[
v′ lnu+ v

u1

u

]
.

Theorem 5.5.5 The following differentiation formulas for the hyperbolic
functions are valid.

(i)
d

dx
(sinhx) = coshx (ii)

d

dx
(coshx) = sinhx

(iii)
d

dx
(tanhx) = sech2x (iv)

d

dx
(cothx) = −csch2x

(v)
d

dx
(sechx) = −sechx tanhx (vi)

d

dx
(cschx) = −cschx cothx

Proof. We use the definitions and properties of hyperbolic functions given
in Chapter 1 and the differentiation formulas of this chapter.

(i)
d

dx
(sinhx) =

d

dx

(
ex − e−x

2

)
=
ex + e−x

2
= coshx.

(ii)
d

dx
(coshx) =

d

dx

(
ex + e−x

2

)
=
ex − e−x

2
= sinhx.

(iii)
d

dx
(tanhx) =

d

dx

(
sinhx

coshx

)
=

(coshx)(coshx)− sinh(sinhx)

(coshx)2

=
cosh2 x− sinh2 x

(coshx)2
=

1

coshx)2
= sech2x



238 CHAPTER 5. THE DEFINITE INTEGRAL

(iv)
d

dx
(cothx) =

d

dx
(tanhx)−1 = −1(tanhx)−2 · sech2x

= −cosh2 x

sinh2 x
· 1

cosh2 x
= − 1

sinh2 x

= −csch2x.

(v)
d

dx
(sechx) =

d

dx
(coshx)−1 = −1(coshx)−2 · sinhx

= − sechx tanhx.

(vi)
d

dx
(cschx) =

d

dx
(sinhx)−1 = −1(sinhx)−2 · coshx

= − cothx cschx.

This completes the proof.

Theorem 5.5.6 The following integration formulas are valid:

(i)

∫
sinhx dx = coshx+ c (ii)

∫
coshx dx = sinhx+ c

(iii)

∫
tanhx dx = ln(coshx) + c (iv)

∫
cothxdx = ln | sinhx|+ c

(v)

∫
sechx dx = 2 arctan(ex) + c (vi)

∫
cschx dx = ln

∣∣∣tanh
(x

2

)∣∣∣+ c

Proof. Each formula can be easily verified by differentiating the right-hand
side to get the integrands on the left-hand side. This proof is left as an
exercise.

Theorem 5.5.7 The following differentiation and integration formulas are
valid:
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(i)
d

dx
(arcsinhx) =

1√
1 + x2

(ii)

∫
dx√

1 + x2
= arcsinhx+ c

(iii)
d

dx
(arccoshx) =

1√
x2 − 1

(iv)

∫
dx√
x2 − 1

= arccoshx+ c

(v)
d

dx
(arctanhx) =

1

1− x2
, |x| < 1 (vi)

∫
1

1− x2
dx = arctanhx+ c

Proof. This theorem follows directly from the following definitions:

(1) arcsinhx = ln(x+
√

1 + x2) (2) arccoshx = ln(x+
√
x2 − 1)

(3) arctanhx =
1

2
ln

(
1 + x

1− x

)
, |x| < 1.

The proof is left as an exercise.

Exercises 5.5

1. Prove Theorem 5.5.6.

2. Prove Theorem 5.5.7.

3. Show that sinhmx and coshmx are linearly independent if m 6= 0. (Hint:
Show that the Wronskian W (sinhmx, coshmx) is not zero if m 6= 0.)

4. Show that emx and e−mx are linearly independent if m 6= 0.

5. Show that solution of the equation y′′ − m2y = 0 can be expressed as
y = c1e

mx + c2e
−mx.

6. Show that every solution of y′′ − m2y = 0 can be written as y =
A sinhmx+B coshmx.

7. Determine the relation between c1 and c2 in problem 5 with A and B in
problem 6.

8. Prove the basic identities for hyperbolic functions:
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(i) sinh(x+ y) = sinhx cosh y + coshx sinh y.

(ii) sinh(x− y) = sinhx cosh y − coshx sinh y.

(iii) cosh(x+ y) = coshx cosh y + sinhx sinh y.

(iv) cosh(x− y) = coshx cosh y − sinhx sinh y.

(v) sinh 2x = 2 sinhx coshx.

(vi) cosh2 x+ sinh2 x = 2 cosh2 x− 1 = 1 + 2 sinh2 x = cosh 2x.

(vii) cosh2 x− sinh2 x = 1, 1− tanh2 x = sech2x, coth2 x− 1 = csch2x.

9. Eliminate the radical sign using the given substitution:

(i)
√
a2 + x2, x = a sinh t (ii)

√
a2 − x2, x = tanh t

(iii)
√
x2 − a2, x = a cosh t.

10. Compute y′ in each of the following:

(i) y = 2 sinh(3x) + 4 cosh(2x) (ii) y = 4 tanh(5x)− 6 coth(3x)

(iii) y = x sech (2x) + x2 csch (5x) (iv) y = 3 sinh2(4x+ 1)

(v) y = 4 cosh2(2x− 1) (vi) y = sinh(2x) cosh(3x)

11. Compute y′ in each of the following:

(i) y = x2e−x
3

(ii) y = 2x
2

(iii) y = (x2 + 1)sin(2x)

(iv) y = log10(x2 + 1) (v) y = log2(secx+ tanx)(vi) y = 10(x3+1)

12. Compute y′ in each of the following:

(i) y = x lnx− x (ii) y = ln(x+
√
x2 − 4) (iii) y = ln(x+

√
4 + x2)

(iv) y =
1

2
ln

(
1 + x

1− x

)
(v) y = arcsinh (3x) (vi) y = arccosh (3x)
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13. Evaluate each of the following integrals:

(i)

∫
sinh(3x) dx (ii)

∫
x3ex

2

dx (iii)

∫
x2 ln(x+ 1) dx

(iv)

∫
x sinh 2x dx (v)

∫
x cosh 3x dx (vi)

∫
x4x

2

dx

14. Evaluate each of the following integrals:

(i)

∫
arcsinhx dx (ii)

∫
arccoshx dx (iii)

∫
arctanhx dx

(iv)

∫
dx√

4− x2
(v)

∫
dx√

4 + x2
(vi)

∫
dx√
x2 − 4

15. Logarithmic Differentiation is a process of computing derivatives by first
taking logarithms and then using implicit differentiation. Find y′ in each
of the following, using logarithmic differentiation.

(i) y =
(x2 + 1)3(x2 + 4)10

(x2 + 2)5(x2 + 3)4
(ii) y = (x2 + 4)(x3+1)

(iii) y = (sinx+ 3)(4 cosx+7) (iv) y = (3 sinhx+ cosx+ 5)(x3+1)

(v) y = (ex
2

+ 1)(2x+1) (vi) y = x2(x2 + 1)(x3+1)

In problems 16–30, compute f ′(x) each f(x).

16. f(x) =

∫ x

1

sinh3(t)dt 17. f(x) =

∫ x2

x

cosh5(t)dt

18. f(x) =

∫ coshx

sinhx

(1 + t2)3/2dt 19. f(x) =

∫ sechx

tanhx

(1 + t3)1/2dt

20. f(x) =

∫ (lnx)2

lnx

(4 + t2)5/2dt 21. f(x) =

∫ ex
2

ex
2

(1 + 4t2)πdt
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22. f(x) =

∫ ecos x

esin x

1

(1 + t2)3/2
dt 23. f(x) =

∫ 3x

2x

1

(4 + t2)5/2
dt

24. f(x) =

∫ 53x

42x

(1 + 2t2)3/2dt 25. f(x) =

∫ log3 x

log2 x

(1 + 5t3)1/2dt

26. f(x) =

∫ arccoshx

arcsinhx

1

(1 + t2)3/2
dt 27. f(x) =

∫ 4x
3

2x
2
et

2

dt

28. f(x) =

∫ 5cos x

4sin x

e−t
2

dt 29. f(x) =

∫ cosh(x3)

sinh(x2)

e−t
3

dt

30. f(x) =

∫ arccothx

arctanhx

sin(t2)dt

In problems 31–40, evaluate the given integrals.

31.

∫
earctanx

1 + x2
dx 32.

∫
earcsinx

√
1− x2

dx 33.

∫
esin 2x cos 2x dx

34.

∫
x2ex

3

dx 35.

∫
e2x

1 + e2x
dx 36.

∫
ex cos(1 + 2ex)dx

37.

∫
e3x sec2(2 + e3x)dx 38.

∫
10cosx sinx dx 39.

∫
4arcsecx

x
√
x2 − 1

dx

40.

∫
x 10x

2+3 dx

5.6 The Riemann Integral

In defining the definite integral, we restricted the definition to continuous
functions. However, the definite integral as defined for continuous functions
is a special case of the general Riemann Integral defined for bounded functions
that are not necessarily continuous.
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Definition 5.6.1 Let f be a function that is defined and bounded on a
closed and bounded interval [a, b]. Let P = {a = x0 < x1 < x2 < · · · <
xn = b} be a partition of [a, b]. Let C = {ci : xi−1 ≤ ci ≤ xi, i = 1, 2, · · · , n}
be any arbitrary selection of points of [a, b]. Then the Riemann Sum that is
associated with P and C is denoted R(P ) and is defined by

R(P ) = f(c1)(x1 − x0) + f(c2)(x2 − x1) + · · ·+ f(cn)(xn + xn−1)

=
n∑
i=1

f(ci)(xi − xi−1).

Let ∆xi = xi − xi−1, i = 1, 2, · · · , n. Let ||∆|| = max
1≤i≤n

{∆xi}. We write

R(P ) =
n∑
i=1

f(ci)∆xi.

We say that

lim
||∆||→0

n∑
i=1

f(ci)∆xi = I

if and only if for each ε > 0 there exists some δ > 0 such that∣∣∣∣∣
n∑
i=1

f(ci)∆xi − I

∣∣∣∣∣ < ε

whenever ||∆|| < δ for all partitions P and all selections C that define the
Riemann Sum.

If the limit I exists as a finite number, we say that f is (Riemann) inte-
grable and write

I =

∫ b

a

f(x) dx.

Next we will show that if f is continuous, the Riemann integral of f is
the definite integral defined by lower and upper sums and it exists. We first
prove two results that are important.

Definition 5.6.2 A function f is said to be uniformly continuous on its
domain D if for each ε > 0 there exists δ > 0 such that if |x1 − x2| < δ, for
any x1 and x2 in D, then

|f(x1)− f(x2)| < ε.



244 CHAPTER 5. THE DEFINITE INTEGRAL

Definition 5.6.3 A collection C = {Uα : Uα is an open interval} is said to
cover a set D if each element of D belongs to some element of C.

Theorem 5.6.1 If C = {Uα : Uα is an open interval} covers a closed and
bounded interval [a, b], then there exists a finite subcollection B = {Uα1 , Uα2 , · · · , Uαn}
of C that covers [a, b].

Proof. We define a set A as follows:

A = {x : x ∈ [a, b] and [a, x] can be covered by a finite subcollection of C}.

Since a ∈ A, A is not empty. A is bounded from above by b. Then A has a
least upper bound, say lub(A) = p. Clearly, p ≤ b. If p < b, then some Uα
in C contains p. If Uα = (aα, bα), then aα < p < bα. Since p = `ub(A), there
exists some point a∗ of A between aα and p. There exists a subcollection

B = {Uα1 , · · · , Uαn} that covers [a, a∗]. Then the collection
B1 = {Uα1 , · · · , Uαn , Uα} covers [a, bα). By the definition of A, A must

contain all points of [a, b] between p and bα. This contradicts the assump-
tion that p = `ub(A). So, p = b and b ∈ A. It follows that some finite
subcollection of C covers [a, b] as required.

Theorem 5.6.2 If f is continuous on a closed and bounded interval [a, b],
then f is uniformly continuous on [a, b].

Proof. Let ε > 0 be given. If p ∈ [a, b], then there exists δp > 0 such
that |f(x) − f(p)| < ε/3, whenever p − δp < x < p + δp. Let Up =(
p− 1

3
δp, p+

1

3
δp

)
. Then C = {Up : p ∈ [a, b]} covers [a, b]. By The-

orem 5.6.1, some finite subcollection B = {Up1 , Up2 , . . . , Upn} of C covers

[a, b]. Let δ =
1

3
min{δpi : i = 1, 2, · · · , n}. Suppose that |x1 − x2| < δ for

any two points x1 and x2 of [a, b]. Then x1 ∈ Upi and x2 ∈ Upj for some pi
and pj. We note that

|pi − pj| = |(pi − x1) + (x1 − x2) + (x2 − pj)|
≤ |pi − xi|+ |x1 − x2|+ |x2 − pj|

<
1

3
δpi + δ +

1

3
δpj

≤ max{δpi , δpj}.
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It follows that both pi and pj are either in Upi or Upj . Suppose that pi and
pj are both in Upi . Then

|x2 − pi| = |(x2 − x1)|+ (x1 − pi)|
≤ |x2 − x1|+ |x1 − pi|

< δ +
1

3
δpi

< δpi .

So, x1, x2, pi and pj are all in Upi . Then

|f(x1)− f(x2)| = |(f(x1)− f(pi)) + (f(pi)− f(x2))|
≤ |f(x1)− f(pi)|+ |f(pi)− f(x2)|

<
ε

3
+
ε

3
< ε.

By Definition 5.6.2, f is uniformly continuous on [a, b].

Theorem 5.6.3 If f is continuous on [a, b], then f is (Riemann) integrable
and the definite integral and the Riemann integral have the same value.

Proof. Let P = {a = x0 < x1 < x2 < . . . < xn = b} be a partition of [a, b]
and C = {ci : xi−1 ≤ ci ≤ xi, i = 1, 2, . . . , n} be an arbitrary selection. For
each i = 1, 2, . . . , n let

mi = absolute minimum of f on [xi−1, xi] obtained at c∗i , f(c∗i ) = mi;
Mi = absolute maximum of f on [xi−1, xi] obtained at c∗∗i ) = Mi;
m = absolute minimum of f on [a, b];
M = absolute maximum of f on [a, b];

R(P ) =
n∑
i=1

f(ci)∆xi,

Then for each i = 1, 2, . . . , n, we have

m(b− a) ≤
n∑
i=1

f(c∗i )(xi − xi−1) ≤
n∑
i=1

f(ci)(xi − xi−1)

≤
n∑
i=1

f(c∗∗i )(xi − xi−1) ≤M(b− a).
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We recall that

L(P ) =
n∑
i=1

f(c∗i )∆xi, R(P ) =
n∑
i=1

f(ci)∆xi, U(P ) =
n∑
i=1

f(c∗∗i )∆xi.

We note that L(P ) and U(P ) are also Riemann sums and for every partition
P , we have

L(P ) ≤ R(P ) ≤ U(P ).

To prove the theorem, it is sufficient to show that

lub{L(P )} = glb{U(P )}.

Since f is uniformly continuous, by Theorem 5.6.2, for each ε > 0 there is

some δ > 0 such that |f(x)−f(y)| < ε

b− a
whenever |x−y| < δ for x and y in

[a, b]. Consider all partitions P , selections C = {ci}, C∗ = {c∗i }, C∗∗ = {c∗∗i }
such that

||∆|| = max
1≤i≤n

(xi − xi−1) <
δ

3
.

Then, for each i = 1, 2, . . . , n

|f(c∗∗i )− f(c∗i )| <
ε

b− a
|f(c∗i )− f(ci)| <

ε

b− a
|f(c∗∗i )− f(ci)| <

ε

b− a

|U(P )− L(P )| =

∣∣∣∣∣
n∑
i=1

(f(c∗∗i )− f(c∗i ))∆xi

∣∣∣∣∣
≤

m∑
i=1

|f(c∗∗i )− f(c∗i )|∆xi

<
ε

b− a

n∑
i=1

∆xi

= ε.

It follows that

lub{L(P )} = lim
||∆||→0

R(P )p = glb{U(P )} = I.
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By definition of the definite integral, I equals the definite integral of f(x)
from x = a to x = b, which is also the Riemann integral of f on [a, b]. We
write

I =

∫ b

a

f(x) dx.

This proves Theorem 5.6.2 as well as Theorem 5.2.1.

Exercises 5.6

1. Prove Theorem 5.2.3. (Hint: For each partition P = {a = x0 < x1 <

. . . < xn = b] of [a, b],

g(b)− g(a) = [g(xn)− g(xn−1)] + [g(xn−1)− g(xn−2)] + . . .+ [g(x1)− g(x0)]

=
n∑
i=1

[g(xi)− g(xi−1)]

=
n∑
i=1

g′(ci)(xi − xi−1) (by Mean Value Theorem)

=
n∑
i=1

f(ci)(xi − xi−1)

= R(P )

for some selection C = {ci : xi−1 < ci < xi, i = 1, 2, · · · , n}.)

2. Prove Theorem 5.2.3 on the linearity property of the definite integral.
(Hint:∫ b

a

[Af(x) + bg(x)] dx = lim
||∆||→0

{
n∑
i=1

[Af(ci) +Bg(ci)] · [xi − xi−1)

}

= lim
||∆||→0

(
A

n∑
i=1

f(ci)∆xi +B
n∑
i=1

g(ci)∆xi

)

= A

(
lim
||∆||→0

n∑
i=1

f(ci)∆xi

)
+B lim

||∆||→0

n∑
i=1

g(ci)∆xi

= A

∫ b

a

f(x)dx+B

∫ b

a

g(x)dx.)
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3. Prove Theorem 5.2.4.

(Hint: [a, b] = [a, c] ∪ [c, b]. If P = {a = x0 < x1 < . . . < xn = b} is a
partition of [a, b], then for some i, P1 = {a = x0 < . . . < xi−1 < c < xi <
. . . < xn = b} yields a partition of [a, b]; {a < x0 < · · · < xi−1 < c} is a
partition of [a, c] and {c < xi < · · · < xn = b} is a partition of [c, b]. The
addition of c to the partition does not increase ||∆||.)

4. Prove Theorem 5.2.5.

(Hint: For each partition P and selection C we have

n∑
i=1

f(ci)(xi − xi−1) ≤
n∑
i=1

g(ci)(xi − xi−1).)

5. Prove that if f is continuous on [a, b] and f(x) > 0 for each x ∈ [a, b],
then ∫ b

a

f(x) dx > 0.

(Hint: There is some c in [a, b] such that f(c) is the absolute minimum
of f on [a, b] and f(c) > 0. Then argue that

0 < f(c)(b− a) ≤ L(P ) ≤ U(P )

for each partition P .)

6. Prove that if f and g are continuous on [a, b], f(x) > g(x) for all x in
[a, b], then ∫ b

a

f(x) dx >

∫ b

a

g(x) dx.

(Hint: By problem 5, ∫ b

a

(f(x)− g(x)) dx > 0.

Use the linearity property to prove the statement.)

7. Prove that if f is continuous on [a, b], then∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)|dx.
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(Hint: Recall that −|f(x)| ≤ f(x) ≤ |f(x)| for all x ∈ [a, b]. Use problem
5 to conclude the result.)

8. Prove the Mean Value Theorem, Theorem 5.2.6.

(Hint: Let

m = absolute minimum of f on [a, b];

M = absolute minimum of f on [a, b];

fav[a, b] =
1

b− a

∫ b

a

f(x) dx;

m(b− a) ≤
∫ b

a

f(x)dx ≤M(b− a).

Then m ≤ fav[a, b] ≤M . By the intermediate value theorem for contin-
uous functions, there exists some c on [a, b] such that f(c) = fav[a, b].)

9. Prove the Fundamental Theorem of Calculus, First Form, Theorem 5.2.6.

(Hint:

g′(x) = lim
h→0

g(x+ h)− g(x)

h

= lim
h→0

1

h

[∫ x+h

a

f(t)dt−
∫ x

a

f(t)dt

]
= lim

h→0

1

h

[∫ x

a

f(t) dx+

∫ x+h

x

f(t)dt−
∫ x

a

f(t)dt

]
= lim

h→0

1

h

[∫ x+h

x

f(t)dt

]
= lim

h→0
f(c), (for some c, x ≤ c ≤ x+ h; )

= f(x)

where x ≤ c ≤ x+ h, by Theorem 5.2.6.)

10. Prove the Leibniz Rule, Theorem 5.2.8.

(Hint: ∫ β(x)

α(x)

f(t)dt =

∫ β(x)

a

f(t)dt−
∫ α(x)

a

f(t)dt

for some a. Now use the chain rule of differentiation.)
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11. Prove that if f and g are continuous on [a, b] and g is nonnegative, then
there is a number c in (a, b) for which∫ b

a

f(x)g(x) dx = f(c)

∫ b

a

g(x) dx.

(Hint: If m and M are the absolute minimum and absolute maximum of
f on [a, b], then mg(x) ≤ f(x)g(x) ≤Mg(x). By the Order Property,

m

∫ b

a

g(x) dx ≤
∫ b

a

f(x)g(x) ≤M

∫ b

a

g(x) dx

m ≤
∫ b
a
f(x)g(x) dx∫ b
a
g(x) dx

≤M

(
if

∫ b

0

g(x) dx 6= 0

)
.

By the Intermediate Value Theorem, there is some c such that

f(x) =

∫ b
a
f(x)g(x) dx∫ b
a
g(x) dx

or∫ b

a

f(x)g(x) dx = f(c)

∫ b

a

g(x) dx.

If

∫ b

a

g(x) dx = 0, then g(x) 6≡ 0 on [a, b] and all integrals are zero.)

Remark 20 The number f(c) is called the weighted average of f on [a, b]
with respect to the weight function g.

5.7 Volumes of Revolution

One simple application of the Riemann integral is to define the volume of a
solid.

Theorem 5.7.1 Suppose that a solid is bounded by the planes with equations
x = a and x = b. Let the cross-sectional area perpendicular to the x-axis at
x be given by a continuous function A(x). Then the volume V of the solid is
given by

V =

∫ b

a

A(x) dx.
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Proof. Let P = {a = x0 < x1 < x2 < · · · < xn = b} be a partition of [a, b].
For each i = 1, 2, 3, · · · , n, let

Vi = volume of the solid between the planes with equations x = xi−1 and
x = xi,

mi = absolute minimum of A(x) on [xi−1, xi],
Mi = absolute maximum of A(x) on [xi−1, xi],
∆xi = xi − xi−1.

Then

mi∆xi ≤ Vi ≤Mi∆xi,mi ≤
Vi

∆xi
≤Mi.

Since A(x) is continuous, there exists some ci such that xi−1 ≤ ci ≤Mi and

mi ≤ A(ci) =
Vi

∆xi
≤Mi

Vi = A(ci)∆xi

V =
n∑
i=1

A(ci)∆xi.

It follows that for each partition P of [a, b] there exists a Riemann sum that
equals the volume. Hence, by definition,

V =

∫ b

a

A(x) dx.

Theorem 5.7.2 Let f be a function that is continuous on [a, b]. Let R
denote the region bounded by the curves x = a, x = b, y = 0 and y = f(x).
Then the volume V obtained by rotating R about the x-axis is given by

V =

∫ b

a

π(f(x))2dx.

Proof. Clearly, the volume of the rotated solid is between the planes with
equations x = a and x = b. The cross-sectional area at x is the circle
generated by the line segment joining (x, 0) and (x, f(x)) and has areaA(x) =
π(f(x))2. Since f is continuous, A(x) is a continuous function of x. Then by
Theorem 5.7.1, the volume V is given by

V =

∫ b

a

π(f(x))2 dx.
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Theorem 5.7.3 Let f and R be defined as in Theorem 5.7.2. Assume that
f(x) > 0 for all x ∈ [a, b], either a ≥ 0 or b ≤ 0, so that [a, b] does not
contain 0. Then the volume V generated by rotating the region R about the
y-axis is given by

V =

∫ b

a

(2πxf(x)) dx.

Proof. The line segment joining (x, 0) and (x, f(x)) generates a cylinder
whose area is A(x) = 2πxf(x). We can see this if we cut the cylinder
vertically at (−x, 0) and flattening it out. By Theorem 5.7.1, we get

V =

∫ b

a

2πxf(x) dx.

Theorem 5.7.4 Let f and g be continuous on [a, b] and suppose that f(x) >
g(x) > 0 for all x on [a, b]. Let R be the region bounded by the curves
x = a, x = b, y = f(x) and y = g(x).

(i) The volume generated by rotating R about the x-axis is given by∫ b

a

π[(f(x))2 − (g(x))2] dx.

(ii) If we assume R does not cross the y-axis, then the volume generated by
rotating R about the y-axis is given by

V =

∫ b

a

2πx[f(x)− g(x)]dx.

(iii) If, in part (ii), R does not cross the line x = c, then the volume generated
by rotating R about the line x = c is given by

V =

∫ b

a

2π|c− x|[f(x)− g(x)]dx.

Proof. We leave the proof as an exercise.



5.7. VOLUMES OF REVOLUTION 253

Remark 21 There are other various horizontal or vertical axes of rotation
that can be considered. The basic principles given in these theorems can be
used. Rotations about oblique lines will be considered later.

Example 5.7.1 Suppose that a pyramid is 16 units tall and has a square
base with edge length of 5 units. Find the volume of V of the pyramid.

graph

We let the y-axis go through the center of the pyramid and perpendicular
to the base. At height y, let the cross-sectional area perpendicular to the
y-axis be A(y). If s(y) is the side of the square A(y), then using similar
triangles, we get

s(y)

5
=

16− y
16

, s(y) =
5

16
(16− y)

A(y) =
25

256
(16− y)2.

Then the volume of the pyramid is given by∫ 16

0

A(y)dy =

∫ 16

0

25

256
(16− y)2dy

=
25

256

[
(16− y)3

−3

]16

0

=
25

256

[
(16)3

3

]
=

(25)(16)

3

=
400

3
cubic units.

Check : V =
1

3
(base side)2 · height

=
1

3
(25) · 16

=
400

3
.
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Example 5.7.2 Consider the region R bounded by y = sinx, y = 0, x = 0
and x = π. Find the volume generated when R rotated about

(i) x-axis (ii) y-axis (iii) y = −2 (iv) y = 1
(v) x = π (vi) x = 2π.

(i) By Theorem 5.7.2, the volume V is given by

V =

∫ π

0

π sin2 x dx

= π ·
[

1

2
(x− sinx cosx)

]π
0

=
π2

2
.

graph

(ii) By Theorem 5.7.3, the volume V is given by (integrating by parts)

V =

∫ π

0

2πx sinx dx ; (u = x, dv = sinx dx)

= 2π[−x cosx+ sinx]π0
= 2π[π]

= 2π2.

graph
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(iii) In this case, the volume V is given by

V =

∫ π

0

π(sinx+ 2)2 dx

=

∫ π

0

π[sin2 x+ 4 sinx+ 4] dx

= π

[
1

2
(x− sinx cosx)− 4 cosx+ 4x

]π
0

= π

[
1

2
π + 8 + 4π

]
=

9

2
π2 + 8π.

graph

(iv) In this case,

V =

∫ π

0

π[12 − (1− sinx)2] dx.

graph
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V =

∫ π

0

π[1− 1 + 2 sinx− sin2x]dx

= π

[
−2 cosx− 1

2
(x− sinx cosx)

]π
0

= π

[
4− 1

2
(π)

]
=
π(8− π)

2
.

(v)

V =

∫ π

0

(2π(π − x) sinx] dx

= 2π

∫ π

0

[π sinx− x sinx] dx

= 2π[−π cosx+ x cosx− sinx]π0
= 2π[2π − π]

= 2π2.

graph

(vi)

V =

∫ π

0

2π(2π − x) sinx dx

= 2π[−2π cosx+ x cosx− sinx]π0
= 2π[4π − π]

= 6π2.
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graph

Example 5.7.3 Consider the region R bounded by the circle (x−4)2 +y2 =
4. Compute the volume V generated when R is rotated around

(i) y = 0 (ii) x = 0 (iii) x = 2

graph

(i) Since the area crosses the x-axis, it is sufficient to rotate the top half to
get the required solid.

V =

∫ 6

2

πy2 dx = π

∫ 6

2

[4− (x− 4)2] dx

= π

[
4x− 1

3
(x− 4)3

]6

2

= π

[
16− 8

3
− 8

3

]
=

32

3
π.

This is the volume of a sphere of radius 2.

(ii) In this case,

V =

∫ 6

2

2πx(2y) dx = 4π

∫ 6

2

x[
√

4− (x− 4)2]dx ;x− 4 = 2 sin t

dx = 2 cos tdt

= 4π

∫ π/2

−π/2
(4 + 2 sin t)(2 cos t)(2 cos t)dt

= 4π

∫ π/2

−π/2
(16 cos2 t+ 8 cos2 t sin t) dx

= 4π

[
16 · 1

2
(t+ sin t cos t)− 8

3
cos3 t

]π/2
−π/2

= 4π[8(π)]

= 32π2
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(iii) In this case,

V =

∫ 6

2

2π(x− 2)2y dx

= 4π

∫ 6

2

(x− 2)
√

4− (x− 4)2 dx ;x− 4 = 2 sin t

dx = 2 cos tdt

= 4π

∫ π/2

−π/2
(2 + 2 sin t)(2 cos t)(2 cos t)dt

= 4π

∫ π/2

−π/2
(8 cos2 t+ 8 cos2 t sin t)dt

= 4π

[
4(t+ sin t cos t)− 8

3
cos3 t

]π/2
−π/2

= 4π[4π]

= 16π2

Exercises 5.7

1. Consider the region R bounded by y = x and y = x2. Find the volume
generated when R is rotated around the line with equation

(i) x = 0 (ii) y = 0 (iii) y = 1 (iv) x = 1
(v) x = 4 (vi) x = −1 (vii) y = −1 (viii) y = 2

2. Consider the region R bounded by y = sinx, y = cosx, x = 0, x =
π

2
. Find the volume generated when R is rotated about the line with

equation

(i) x = 0 (ii) y = 0 (iii) y = 1 (iv) x =
π

2

3. Consider the region R bounded by y = ex, x = 0, x = ln 2, y = 0. Find
the volume generated when R is rotated about the line with equation

(i) y = 0 (ii) x = 0 (iii) x = ln 2 (iv) y = −2

(v) y = 2 (iv) x = 2
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4. Consider the region R bounded by y = lnx, y = 0, x = 1, x = e. Find
the volume generated when R is rotated about the line with equation

(i) y = 0 (ii) x = 0 (iii) x = 1 (v) x = e

(v) y = 1 (vi) y = −1

5. Consider the region R bounded by y = coshx, y = 0, x = −1, x =
1. Find the volume generated when R is rotated about the line with
equation

(i) y = 0 (ii) x = 2 (iii) x = 1 (iv) y = −1

(v) y = 6 (vi) x = 0

6. Consider the region R bounded by y = x, y = x3. Find the volume
generated when R is rotated about the line with equation

(i) y = 0 (ii) x = 0 (iii) x = −1 (iv) x = 1

(v) y = 1 (vi) y = −1

7. Consider the region R bounded by y = x2, y = 8− x2. Find the volume
generated when R is rotated about the line with equation

(i) y = 0 (ii) x = 0 (iii) y = −4 (iv) y = 8

(v) x = −2 (vi) x = 2

8. Consider the region R bounded by y = sinhx, y = 0, x = 0, x = 2. Find
the volume generated when R is rotated about the line with equation

(i) y = 0 (ii) x = 0 (iii) x = 2 (iv) x = −2

(v) y = −1 (vi) y = 10

9. Consider the region R bounded by y =
√
x, y = 4, x = 0. Find the

volume generated when R is rotated about the line with equation

(i) y = 0 (ii) x = 0 (iii) x = 16 (iv) y = 4

10. Compute the volume of a cone with height h and radius r.
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5.8 Arc Length and Surface Area

The Riemann integral is useful in computing the length of arcs. Let f and
f ′ be continuous on [a, b]. Let C denote the arc

C = {(x, f(x)) : a ≤ x ≤ b}.

Let P = {a = x0 < x1 < x2 < . . . < xn = b} be a partition of [a, b]. For each
i = 1, 2, . . . , n, let

graph

∆xi = xi − xi−1

∆yi = f(xi)− f(xi−1)

∆si =
√

(f(xi)− f(xi−1))2 + (xi − xi)2

||∆|| = max
1≤i≤n

{∆xn}.

Then ∆si is the length of the line segment joining the two points (xi−1, f(xi−1))
and (xi, f(xi)). Let

A(P ) =
n∑
i=1

∆si.

Then A(P ) is called the polygonal approximation of C with respect to
the portion P .

Definition 5.8.1 Let C = {(x, f(x)) : x ∈ [a, b]} where f and f ′ are con-
tinuous on [a, b]. Then the arc length L of the arc C is defined by

L = lim
||∆||→0

Ap = lim
||∆||→0

n∑
i=1

√
(f(xi)− f(xi−1))2 + (xi − xi−1)2.

Theorem 5.8.1 The arc length L defined in Definition 5.8.1 is given by

L =

∫ b

a

√
(f ′(x))2 + 1 dx.
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Proof. By the Mean Value Theorem, for each i = 1, 2, . . . , n,

f(xi)− f(xi−1) = f ′(ci)(xi − xi−1)

for some ci such that xi−1 < ci < xi. Therefore, each polynomial approxima-
tion Ap is a Riemann Sum of the continuous function√

(f ′(x))2 + 1

A(P ) =
n∑
i=1

√
(f ′(ci))2 + 1 ∆xi,

for some ci such that xi−1 < ci < xi.
By the definition of the Riemann integral, we get

L =

∫ b

a

√
(f ′(x))2 + 1 dx.

Example 5.8.1 Let C = {(x, coshx) : 0 ≤ x ≤ 2}. Then the arc length L
of C is given by

L =

∫ 2

0

√
1 + sinh2 x dx

=

∫ 2

0

coshx dx

= [sinhx]20
= sinh 2.

Example 5.8.2 Let C =

{(
x,

2

3
x3/2

)
: 0 ≤ x ≤ 4

}
. Then the arc length

L of the curve C is given by

L =

∫ 4

0

√
1 +

(
2

3
· 3

2
x1/2

)2

dx

=

∫ 4

0

(1 + x)1/2 dx

=

[
2

3
(1 + x)3/2

]4

0

=
2

3
[5
√

5− 1].
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Definition 5.8.2 Let C be defined as in Definition 5.8.1.

(i) The surface area Sx generated by rotating C about the x-axis is given by

Sx =

∫ b

a

2π|f(x)|
√

(f ′(x))2 + 1 dx.

(ii) The surface area Sy generated by rotating C about the y-axis

Sy =

∫ b

a

2π|x|
√

(f ′(x))2 + 1 dx.

Example 5.8.3 Let C = {(x, coshx) : 0 ≤ x ≤ 4}.

(i) Then the surface area Sx generated by rotating C around the x-axis is
given by

Sx =

∫ 4

0

2π coshx
√

1 + sinh2 x dx

= 2π

∫ 4

0

cosh2 x dx

= 2π

[
1

2
(x+ sinhx coshx)

]4

0

= π[4 + sinh 4 cosh 4].

(ii) The surface area Sy generated by rotating the curve C about the y-axis
is given by

Sy =

∫ 4

0

2πx
√

1 + sinh2 x dx

= 2π

∫ 4

0

x coshx dx ; (u = x, dv = coshx dx)

= 2π[x sinhx− coshx]40
= 2π[4 sinh 4− cosh 4 + 1]
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Theorem 5.8.2 Let C = {(x(t), y(t)) : a ≤ t ≤ b}. Suppose that x′(t) and
y′(t) are continuous on [a, b].

(i) The arc length L of C is given by

L =

∫ b

a

√
(x′(t))2 + (y′(t))2 dt.

(ii) The surface area Sx generated by rotating C about the x-axis is given by

Sx =

∫ b

a

2π|y(t)|
√

(x′(t))2 + (y′(t))2 dt.

(iii) The surface area Sy generated by rotating C about the y-axis is given by

Sy =

∫ b

a

2π|x(t)|
√

(x′(t))2 + (y′(t))2 dt.

Proof. The proof of this theorem is left as an exercise.

Example 5.8.4 Let C =
{

(et sin t, et cos t) : 0 ≤ t ≤ π

2

}
. Then

ds =
√

(x′(t))2 + (y′(t))2 dt

=
√

(et(sin t+ cos t))2 + (et(cos t− sin t))2 dt

= {e2t(sin2 t+ cos2 t+ 2 sin t cos t+ cos2 t+ sin2 t− 2 cos t sin t)}1/2 dt

= et
√

2 dt.

(i) The arc length L of C is given by

L =

∫ π/2

0

√
2etdt

=
√

2
[
et
]π/2

0

=
√

2
(
eπ/2 − 1

)
.
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(ii) The surface area Sx obtained by rotating C about the x-axis is given by

Sx =

∫ π/2

0

2π(et cos t)(
√

2etdt)

= 2
√

2π

∫ π/2

0

e2t cos tdt

= 2
√

2π

[
e2t

5
(2 cos t+ sin t)

]π/2
0

= 2
√

2π

[
eπ

5
(1)− 2

5

]
=

2
√

2π

5
(eπ − 2).

(iii) The surface area Sy obtained by rotating C about the y-axis is given by

Sy =

∫ π/2

0

2π(et sin t)(
√

2etdt)

= 2
√

2π

∫ π/2

0

e2t sin tdt

= 2
√

2π

[
e2t

5
[2 sin t− cos t]

]π/2
0

= 2
√

2π

[
2eπ

5
+

1

5

]
=

2
√

2π

5
(2eπ + 1).

Exercises 5.8 Find the arc lengths of the following curves:

1. y = x3/2, 0 ≤ x ≤ 4

2. y =
1

3
(x2 + 2)3/2, 0 ≤ x ≤ 1

3. C =
{

(4(cos t+ t sin t), 4(sin t− t cos t)) : 0 ≤ t ≤ π

2

}
4. x(t) = a(cos t+ t sin t), y(t) = a(sin t− t cos t), 0 ≤ t ≤ π

2

5. x(t) = cos3 t, y(t) = sin3 t, 0 ≤ t ≤ π/2
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6. y =
1

2
x2, 0 ≤ t ≤ 1

7. x(t) = t3, y(t) = t2, 0 ≤ t ≤ 1

8. x(t) = 1− cos t, y(t) = t− sin t, 0 ≤ t ≤ 2π

9. In each of the curves in exercises 1-8, set up the integral that represents
the surface area generated when the given curve is rotated about

(a) the x-axis

(b) the y-axis

10. Let C = {(x, coshx) : −1 ≤ x ≤ 1}

(a) Find the length of C.

(b) Find the surface area when C is rotated around the x-axis.

(c) Find the surface area when C is rotated around the y-axis.

In exercises 11–20, consider the given curve C and the numbers a and b.
Determine the integral that represents:

(a) Arc length of C

(b) Surface area when C is rotated around the x-axis.

(c) Surface area when C is rotated around the y-axis.

(d) Surface area when C is rotated around the line x = a.

(e) Surface area when C is rotated around the line y = b.

11. C = {(x, sinx) : 0 ≤ x ≤ π}; a = π, b = 1

12. C =
{

(x, cosx) : 0 ≤ x ≤ π

3

}
; a = π, b = 2

13. C = {(t, ln t) : 1 ≤ t ≤ e}; a = 4, b = 3

14. C = {(2 + cos t, sin t) : 0 ≤ t ≤ π}; a = 4, b = −2

15. C =
{

(t, ln sec t) : 0 ≤ t ≤ π

3

}
; a = π, b = −3

16. C = {(2x, cosh 2x) : 0 ≤ x ≤ 1}; a = −2, b =
1

2
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17. C =
{

(cos t, 3 + sin t) : −π
2
≤ t ≤ π

2

}
; a = 2, b = 5

18. C =
{

(et sin 2t, et cos 2t) : 0 ≤ t ≤ π

4

}
; a = −1, b = 3

19. C = {(e−t, et) : 0 ≤ t ≤ ln 2}; a = −1, b = −4

20. C = {(4−t, 4t) : 0 ≤ t ≤ 1}; a = −2, b = −3



Chapter 6

Techniques of Integration

6.1 Integration by formulae

There exist many books that contain extensive lists of integration, differen-
tiation and other mathematical formulae. For our purpose we will use the
list given below.

1.

∫
af(u)du = a

∫
f(u)du

2.

∫ ( n∑
i=1

aifi(u)

)
du =

n∑
i=1

(∫
aifi(u)du

)

3.

∫
undu =

un+1

n+ 1
+ C, n 6= −1

4.

∫
u−1du = ln |u|+ C

5.

∫
eaudu =

e6au

a
+ C

6.

∫
abudu =

abu

b ln a
+ C, a > 0, a 6= 1

7.

∫
ln |u|du = u ln |u| − u+ C

267
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8.

∫
sin(au)du =

− cos(au)

a
+ C

9.

∫
cos(au)du =

sin(au)

a
+ C

10.

∫
tan(au)du =

ln | sec(au)|
a

+ C

11.

∫
cot(au)du =

ln | sin(au)|
a

+ C

12.

∫
sec(au)du =

ln | sec(au) + tan(au)|
a

+ C

13.

∫
csc(au)du =

ln | csc(au)− cot(au)|
a

+ C

14.

∫
sinh(au)du =

cosh(au)

a
+ C

15.

∫
cosh(au)du =

sinh(au)

a
+ C

16.

∫
tanh(au)du =

ln | cosh(au)|
a

+ C

17.

∫
coth(au)du =

ln | sinh(au)|
a

+ C

18.

∫
sech (au)du =

2

a
arctan(eau) + C

19.

∫
csch (au) du =

2

a
arctanh (eau) + C

20.

∫
sin2(au)du =

u

2
− sin(au) cos(au)

2a
+ C

21.

∫
cos2(au)du =

u

2
+

sin(au) cos(au)

2a
+ C

22.

∫
tan2(au)du =

tan(au)

a
− u+ C
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23.

∫
cot2(au)du = −cot(au)

a
− u+ C

24.

∫
sec2(au)du =

tan(au)

a
+ C

25.

∫
csc2(au)du = −cot(au)

a
+ C

26.

∫
sinh2(au)du = −u

2
+

sinh(2au)

4a
+ C

27.

∫
cosh2(au)du =

u

2
+

sinh(2au)

4a
+ C

28.

∫
tanh2(au)du = u− tanh(au)

a
+ C

29.

∫
coth2(au)du = u− coth(au)

a
+ C

30.

∫
sech 2(au)du =

tanh(au)

a
+ C

31.

∫
csch 2(au)du =

− coth(au)

a
+ C

32.

∫
sec(au) tan(au)du =

sec(au)

a
+ C

33.

∫
csc(au) cot(au)du = −csc(au)

a
+ C

34.

∫
sech (au) tanh(au)du = −sech (au)

a
+ C

35.

∫
csch (au) coth(au)du = −csch (au)

a
+ C

36.

∫
du

a2 + u2
=

1

a
arctan

(u
a

)
+ C

37.

∫
du

a2 − u2
=

1

a
arctanh

(u
a

)
+ C =

1

2a
ln

∣∣∣∣a+ u

a− u

∣∣∣∣+ C
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38.

∫
du√
a2 + u2

= arcsinh
(u
a

)
+ C

39.

∫
du√
a2 − u2

= arcsin
(u
a

)
+ C, |a| > |u|

40.

∫
du√
u2 − a2

= arccosh
(u
a

)
+ C, |u| > |a|

41.

∫
du

u
√
u2 − a2

=
1

a
arcsec

(u
a

)
+ C, |u| > |a|

42.

∫
du

u
√
a2 − u2

= −1

a
arcsech

(u
a

)
+ C, |a| > |u|

43.

∫
du

u
√
a2 + u2

= −1

a
arccsch

(u
a

)
+ C

44.

∫
u du√
a2 + u2

=
√
a2 + u2 + C

45.

∫
u du

a2 − u2
= − ln

√
a2 − u2 + C, |a| > |u|

46.

∫
u du√
a2 + u2

=
√
a2 + u2 + C

47.

∫
u du√
a2 − u2

= −
√
a2 − u2 + C, |a| > |u|

48.

∫
u du√
u2 − a2

=
√
u2 − a2 + C, |u| > |a|

49.

∫
arcsin(au)du = u arcsin(au) +

1

a

√
1− a2u2 + C, |a||u| < 1

50.

∫
arccos(au)du = u arccos(au)− 1

a

√
1− a2u2 + C, |a||u| < 1

51.

∫
arctan(au)du = u arctan(au)− 1

2a
ln(1 + a2u2) + C

52.

∫
arccot (au)du = uarccot (au) +

1

2a
ln(1 + a2u2) + C
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53.

∫
arcsec (au)du = uarcsec (au)− 1

a
ln
∣∣∣au+

√
a2u2 − 1

∣∣∣+ C, au > 1

54.

∫
arccsc (au)du = uarccsc (au) +

1

a
ln
∣∣∣au+

√
a2u2 − 1

∣∣∣+ C, au > 1

55.

∫
arcsinh (au)du = uarcsinh (au)− 1

a

√
1 + a2u2 + C

56.

∫
arccosh (au)du = uarccosh (au)− 1

a

√
−1 + a2u2 + C, |a||u| > 1

57.

∫
arctanh (au)du = uarctanh (au) +

1

2a
ln(−1 + a2u2) + C, |a||u| 6= 1

58.

∫
arccoth (au)du = uarccoth (au) +

1

2a
ln(−1 + a2u2) + C, |a||u| 6= 1

59.

∫
arcsech (au)du = uarcsech (au) +

1

a
arcsin(au) + C, |a||u| < 1

60.

∫
arccsch (au)du = uarccsch (au) +

1

a
ln
∣∣∣au+

√
a2u2 + 1

∣∣∣+ C

61.

∫
eau sin(bu)du =

eau[a sin(bu)− b cos(bu)]

a2 + b2
+ C

62.

∫
eau cos(bu)du =

eau[a cos(bu) + b sin(bu)]

a2 + b2
+ C

63.

∫
sinn(u)du =

−1

n

[
sinn−1(u) cos(u)

]
+
n− 1

n

∫
sinn−2(u)du

64.

∫
cosn(u)du =

1

n

[
cosn−1(u) sin(u)

]
+
n− 1

n

∫
cosn−2(u)du

65.

∫
tann(u)du =

tann−1(u)

n− 1
−
∫

tann−2(u)du

66.

∫
cotn(u)du = −cotn−1(u)

n− 1
−
∫

cotn−2(u)du

67.

∫
secn(u)du =

1

n− 1

[
secn−2(u) tan(u)

]
+
n− 2

n− 1

∫
secn−2(u)du
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68.

∫
cscn(u)du =

−1

n− 1

[
cscn−2(u) cot(u)

]
+
n− 2

n− 1

∫
cscn−2(u)du

69.

∫
sin(mu)sin(nu)du =

sin[(m− n)u]

2(m− n)
− sin[(m+ n)u]

2(m+ n)
+ C, m2 6= n2

70.

∫
cos(mu) cos(nu)du =

sin[(m− n)u]

2(m− n)
+

sin[(m+ n)u]

2(m+ n)
+ C, m2 6= n2

71.

∫
sin(mu) cos(nu)du =

cos[(m− n)u]

2(m− n)
− cos[(m+ n)u]

2(m+ n)
+ C, m2 6= n2

Exercises 6.1

1. Define the statement that g(x) is an antiderivative of f(x) on the closed
interval [a, b]

2. Prove that if g(x) and h(x) are any two antiderivatives of f(x) on [a, b],
then there exists some constant C such that g(x) = ln(x) + C for all x
on [a, b].

In problems 3–30, evaluate each of the indefinite integrals.

3.

∫
x5dx 4.

∫
4

x3
dx 5.

∫
x−3/5dx

6.

∫
3x2/3dx 7.

∫
2√
x
dx 8.

∫
t2
√
t dt

9.

∫ (
t−1/2 + t3/2

)
dt 10.

∫
(1 + x2)2dx 11.

∫
t2(1 + t)2dt

12.

∫
(1 + t2)(1− t2)dt 13.

∫ (
1

t1/2
+ sin t

)
dt 14.

∫
(2 sin t+ 3 cos t)dt

15.

∫
3 sec2 t dt 16.

∫
2 csc2 x dx 17.

∫
4 sec t tan t dt

18.

∫
2 csc t cot t dt 19.

∫
sec t(sec t+ tan t)dt
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20.

∫
csc t(csc t− cot t)dt 21.

∫
sinx

cos2 x
dx

22.

∫
cosx

sin2 x
dx 23.

∫
sin3 t− 3

sin2 t
dt 24.

∫
cos3 t+ 2

cos2 t
dt

25.

∫
tan2 t dt 26.

∫
cot2 t dt 27.

∫
(2 sec2 t+ 1)dt

28.

∫
2

t
dt 29.

∫
sinh t dt 30.

∫
cosh t dt

31. Determine f(x) if f ′(x) = cosx and f(0) = 2.

32. Determine f(x) if f ′′(x) = sinx and f(0) = 1, f ′(0) = 2.

33. Determine f(x) if f ′′(x) = sinhx and f(0) = 2, f ′(0) = −3.

34. Prove each of the integration formulas 1–77.

6.2 Integration by Substitution

Theorem 6.2.1 Let f(x), g(x), f(g(x)) and g′(x) be continuous on an in-
terval [a, b]. Suppose that F ′(u) = f(u) where u = g(x). Then

(i)

∫
f(g(x))g′(x)dx =

∫
f(u)du = F (g(x)) + C

(ii)

∫ b

a

f(g(x))g′(x)dx =

∫ u=g(b)

u=g(u)

f(u)du = F (g(b))− F (g(a)).

Proof. See the proof of Theorem 5.3.1.

Exercises 6.2 In problems 1–39, evaluate the integral by making the given
substitution.
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1.

∫
3x(x2 + 1)10dx, u = x2 + 1 2.

∫
x sin(1 + x2)dx, u = 1 + x2

3.

∫
cos(
√
t)√

t
dt, x =

√
t 4.

∫
3x2

(1 + x3)3/2
dx, u = 1 + x3

5.

∫
2earcsinx

√
1− x2

dx, u = arcsinx 6.

∫
3earccosx

√
1− x2

dx

7.

∫
x 4x

2

dx, u = 4x
2

8.

∫
10sinx cosx dx, u = sinx

9.

∫
4arctanx

1 + x2
dx, u = 4arctanx 10.

∫
(1 + lnx)10

x
dx, u = 1 + lnx

11.

∫
5arcsecx

x
√
x2 − 1

dx, u = arcsecx 12.

∫
(tan 2x)3 sec2 2x dx, u = tan 2x

13.

∫
(cot 3x)5 csc2 3x dx, u = cot 3x 14.

∫
sin21 x cosx dx, u = sinx

15.

∫
cos5 x sinx dx, u = cosx 16.

∫
(1 + sinx)10 cosx dx, u = 1 + sinx

17.

∫
sin3 x dx, u = cosx 18.

∫
cos3 x dx, u = sinx

19.

∫
tan3 x dx, u = tanx 20.

∫
cot3 x dx, u = cotx

21.

∫
sec4 x dx, u = tanx 22.

∫
csc4 x dx, u = cotx

23.

∫
sin3 x cos3 x dx, u = sinx 24.

∫
sin3 x cos3 x dx, u = cosx

25.

∫
tan4 x dx, u = tanx 26.

∫
sin(lnx)

x
dx, u = lnx
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27.

∫
x cos(ln(1 + x2))

1 + x2
dx, u = ln(1 + x)2 28.

∫
tan3 x sec4 x dx, u = secx

29.

∫
cot3 x csc4 x dx, u = cscx 30.

∫
dx√

4− x2
, x = 2 sin t

31.

∫
dx√

9− x2
, x = 3 cos t 32.

∫
dx√

4 + x2
, x = 2 sinh t

33.

∫
dx√
x2 − 9

, x = 3 cosh t 34.

∫
dx

4 + x2
, x = 2 tan t

35.

∫
dx

4− x2
, x = 2 tanh t 36.

∫
dx

x
√
x2 − 4

, x = 2 sec t

37.

∫
4esin(3x) cos(3x)dx, u = sin 3x 38.

∫
x 3(x2+4)dx, u = 3x

2+4

39.

∫
3 etan 2x sec2 x dx, u = tan 2x 40.

∫
x
√
x+ 2 dx, u = x+ 2

Evaluate the following definite integrals.

41.

∫ 1

0

(x+ 1)30dx 42.

∫ 2

1

x(4− x2)1/2dx

43.

∫ π/4

0

tan3 x sec2 x dx 44.

∫ 1

0

x3(x2 + 1)3dx

45.

∫ 2

0

(x+ 1)(x− 2)10dx 46.

∫ 8

0

x2(1 + x)1/2dx

47.

∫ π/6

0

sin(3x)dx 48.

∫ π/4

0

cos(2x)dx

49.

∫ π/4

0

sin3 2x cos 2x dx 50.

∫ π/6

0

cos4 3x sin 3x dx

51.

∫ 1

0

earctanx

1 + x2
dx 52.

∫ 1/2

0

earcsinx

√
1− x2

dx
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53.

∫ 3

2

earcsecx

x
√
x2 − 1

dx 54.

∫ 1

0

dx√
1 + x2

6.3 Integration by Parts

Theorem 6.3.1 Let f(x), g(x), f ′(x) and g′(x) be continuous on an interval
[a, b]. Then

(i)

∫
f(x)g′(x)dx = f(x)g(x)−

∫
g(x)f ′(x)dx

(ii)

∫ b

a

f(x)g′(x)dx = (f(b)g(b)− f(a)g(a))−
∫ b

a

g(x)f ′(x)dx

(iii)

∫
udv = uv −

∫
vdu

where u = f(x) and dv = g′(x)dx are the parts of the integrand.

Proof. See the proof of Theorem 5.4.1.

Exercises 6.3 Evaluate each of the following integrals.

1.

∫
x sinx dx 2.

∫
x cosx dx

3.

∫
x lnx dx 4.

∫
x ex dx

5.

∫
x 4x dx 6.

∫
x2 lnx dx

7.

∫
x2 sinx dx 8.

∫
x2 cosx dx

9.

∫
x2ex dx 10.

∫
x2 10x dx
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11.

∫
ex sinx dx (Let u = ex twice and solve.)

12.

∫
ex cosx dx (Let u = ex twice and solve.)

13.

∫
e2x sin 3x dx (Let u = e2x twice and solve.)

14.

∫
x sin(3x)dx 15.

∫
x2 cos(2x)dx

16.

∫
x2e4xdx 17.

∫
x3 ln(2x)dx

18.

∫
x sec2 x dx 19.

∫
x csc2 x dx

20.

∫
x sinh(4x)dx 21.

∫
x2 coshx dx

22.

∫
x cos(5x)dx 23.

∫
sin(lnx)dx

24.

∫
cos(lnx)dx 25.

∫
x arcsinx dx

26.

∫
x arccosx dx 27.

∫
x arctanx dx

28.

∫
x arcsecx dx 29.

∫
arcsinx dx

30.

∫
arccosx dx 31.

∫
arctanx dx

32.

∫
arcsecx dx

Verify the following integration formulas:
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33.

∫
sinn(ax)dx = −sinn−1(ax) cos(ax)

na
+
n− 1

n

∫
(sinn−2 ax)dx

34.

∫
cosn(ax)dx =

1

na
cosn−1(ax) sin(ax) +

n− 1

n

∫
(cosn−2 ax)dx

35.

∫
xnexdx = xnex − n

∫
xn−1exdx

36.

∫
xn sinx dx = −xn cosx+ n

∫
xn−1 cosx dx

37.

∫
xn cosx dx = xn sinx− n

∫
xn−1 sinx dx

38.

∫
eax sin(bx)dx =

1

a2 + b2
eax[a sin(bx)− b cos(bx)] + C

39.

∫
eax cos(bx) dx =

1

a2 + b2
eax[a cos(bx) + b sin(bx)] + C

40.

∫
xn lnx dx =

1

n+ 1
xn+1 lnx− 1

(n+ 1)2
xn+1 + C, n 6= −1, x > 0

41.

∫
secn x dx =

1

n− 1
secn−2 x tanx+

n− 2

n− 1

∫
secn−2 x dx, n 6= 1, n > 0

42.

∫
cscn x dx =

−1

n− 1
cscn−2 x cotx+

n− 2

n− 1

∫
cscn−2 x dx, n 6= 1, n > 0

Use the formulas 33–42 to evaluate the following integrals:

43.

∫
sin4 x dx 44.

∫
cos5 x dx

45.

∫
x3exdx 46.

∫
x4 sinx dx

47.

∫
x3 cosx dx 48.

∫
e2x sin 3x dx

49.

∫
e3x cos 2x dx 50.

∫
x5 lnx dx
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51.

∫
sec3 x dx 52.

∫
csc3 x dx

Prove each of the following formulas:

53.

∫
tann x dx =

1

n− 1
tann−1 x−

∫
tann−2 x dx, n 6= 1

54.

∫
cotn x dx =

1

n− 1
cotn−1 x−

∫
cotn−2 x dx, n 6= 1

55.

∫
sin2n+1 x dx = −

∫
(1− u2)ndu, u = cosx

56.

∫
cos2n+1 x dx = −

∫
(1− u2)ndu, u = sinx

57.

∫
sin2n+1 x cosm x dx = −

∫
(1− u2)numdu, u = cosx

58.

∫
cos2n+1 x sinm x dx =

∫
(1− u2)numdu, u = sinx

59.

∫
sin2n x cos2m x dx =

∫
(sinx)2n(1− sin2 x)mdx

60.

∫
tann x sec2m x dx =

∫
un(1 + u2)m−1du, u = tanx

61.

∫
cotn x csc2m x dx = −

∫
un(1 + u2)m−1du, u = cotx

62.

∫
tan2n+1 x secm x dx =

∫
(u2 − 1)num−1du, u = secx

63.

∫
cot2n+1 x cscm x dx = −

∫
(u2 − 1)num−1du, u = cscx

64.

∫
sinmx cosnx dx = −1

2

[
cos(m+ n)x

m+ n
+

cos(m− n)x

m− n

]
+C; m2 6= n2
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65.

∫
sinmx sinnx dx =

1

2

[
sin(m− n)x

m− n
− sin(m+ n)x

m+ n

]
+ C; m2 6= n2

66.

∫
cosmx cosnx dx =

1

2

[
sin(m− n)x

m− n
+

sin(m+ n)x

m+ n

]
+ C; m2 6= n2

6.4 Trigonometric Integrals

The trigonometric integrals are of two types. The integrand of the first
type consists of a product of powers of trigonometric functions of x. The
integrand of the second type consists of sin(nx) cos(mx), sin(nx) sin(mx) or
cos(nx) cos(mx). By expressing all trigonometric functions in terms of sine
and cosine, many trigonometric integrals can be computed by using the fol-
lowing theorem.

Theorem 6.4.1 Suppose that m and n are integers, positive, negative, or
zero. Then the following reduction formulas are valid:

1.

∫
sinn x dx =

−1

n
sinn−1 x cosx+

(n− 1)

n

∫
sinn−2 x dx, n > 0

2.

∫
sinn−2 x dx =

1

n− 1
sinn−1 x cosx+

n

n− 1

∫
sinn x dx, n ≤ 0

3.

∫
(sinx)−1 dx =

∫
csc x dx = ln | csc x−cotx|+c or− ln | csc x+cotx|+c

4.

∫
cosn x dx =

1

n
cosn−1 x sinx+

n− 1

n

∫
cosn−2 x dx, n > 0

5.

∫
cosn−2 x dx =

−1

n− 1
cosn−1 x sinx+

n

n− 1

∫
cosn x dx, n ≤ 0

6.

∫
(cosx)−1 dx =

∫
sec x dx = ln | sec x+ tanx|+ c

7.

∫
sinnx cos2m+1 x dx =

∫
sinn x(1− sin2 x)m cosx dx

=
∫
un(1− u2)mdu, u = sinx, du = cosx dx
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8.

∫
sin2n+1x cosm x dx =

∫
cosm x(1− cos2 x)n sinx dx

= −
∫
um(1− u2)ndu, u = cosx, du = − sinx dx

9.

∫
sin2n x cos2m x dx =

∫
(1− cos2 x)n cos2m x dx

=
∫

(1− sin2 x)m sin2n x dx

10.

∫
sin(nx) cos(mx)dx =

−1

2

[
cos(m+ n)x

m− n
+

cos(m− n)x

m− n

]
+ c, m2 6= n2

11.

∫
sin(mx) sin(mx) dx =

1

2

[
sin(m− n)x

m− n
− sin(m+ n)x

m+ n

]
+ c, m2 6= n2

12.

∫
cos(mx) cos(mx) dx =

1

2

[
sin(m− n)x

m− n
+

sin(m+ n)x

m+ n

]
+ c, m2 6= n2

Corollary. The following integration formulas are valid:

13.

∫
tann u du =

tann−1 u

n− 1
−
∫

tann−2 u d

14.

∫
secn u du =

1

n− 1
secn−2 x tanx+

n− 2

n− 1

∫
secn−2 x dx

15.

∫
cscn u du =

−1

n− 1
cscn−2 x cotx+

n− 2

n− 1

∫
cscn−2 x dx

Exercises 6.4 Evaluate each of the following integrals.

1.

∫
sin5 x dx 2.

∫
cos4 x dx

3.

∫
tan5 x dx 4.

∫
cot4 x dx

5.

∫
sec5 x dx 6.

∫
csc4 x dx
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7.

∫
sin5 x cos4 x dx 8.

∫
sin3 x cos5 x dx

9.

∫
sin4 x cos3 x dx 10.

∫
sin2 x cos4 x dx

11.

∫
tan5 x sec4 x dx 12.

∫
cot5 x csc4 x dx

13.

∫
tan4 x sec5 x dx 14.

∫
cot4 x csc5 x dx

15.

∫
tan4 x sec4 x dx 16.

∫
cot4 x csc4 x dx

17.

∫
tan3 x sec3 x dx 18.

∫
cot3 x csc3 x dx

19.

∫
sin 2x cos 3x dx 20.

∫
sin 4x cos 4x dx

21.

∫
sin 3x cos 3x dx 22.

∫
sin 2x sin 3x dx

23.

∫
sin 4x sin 6x dx 24.

∫
sin 3x sin 5x dx

25.

∫
cos 3x cos 5x dx 26.

∫
cos 2x cos 4x dx

27.

∫
cos 3x cos 4x dx 28.

∫
sin 4x cos 4x dx

6.5 Trigonometric Substitutions

Theorem 6.5.1 (a2 − u2 Forms). Suppose that u = a sin t, a > 0. Then



6.5. TRIGONOMETRIC SUBSTITUTIONS 283

du = a cos tdt, a2 − u2 = a2 cos2 t,
√
a2 − u2 = a cos t, t = arcsin(u/a),

sin t =
u

a
, cos t =

√
a2 − u2

a
, tan t =

u√
a2 − u2

,

cot t =

√
a2 − u2

u
, sec t =

a√
a2 − u2

, csc t
a

u
.

graph

The following integration formulas are valid:

1.

∫
udu

a2 − u2
= −1

2
ln |a2 − u2|+ c

2.

∫
du

a2 − u2
=

1

2a
ln

∣∣∣∣a− ua+ u

∣∣∣∣+ c =
1

a
arctanh

(u
a

)
+ c

3.

∫
udu√
a2 − u2

= −
√
a2 − u2 + c

4.

∫
du√
a2 − u2

= arcsin
(u
a

)
+ c

5.

∫
du

u
√
a2 − u2

=
1

a
ln

∣∣∣∣au −
√
a2 − u2

u

∣∣∣∣+ c

6.

∫ √
a2 − u2 du =

a2

2
arcsin

(u
a

)
+

1

2
u
√
a2 − u2 + c

Proof. The proof of this theorem is left as an exercise.
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Theorem 6.5.2 (a2 + u2 Forms). Suppose that u = a tan t, a > 0. Then

du = a sec2 tdt, a2 + u2 = a2 sec2 t,
√
a2 + u2 = a sec t, t = arctan

(u
a

)
,

sin t =
u√

a2 + u2
, cos t =

a√
a2 + u2

, tan t =
u

a

csc t =

√
a2 + u2

u
, sec t =

√
a2 + u2

a
, cot t =

a

u
.

graph

Proof. The proof of this theorem is left as an exercise.

The following integration formulas are valid:

1.

∫
udu

a2 + u2
=

1

2
ln
∣∣a2 + u2

∣∣+ c

2.

∫
du

a2 + u2
=

1

a
arctan

(u
a

)
+ c

3.

∫
udu√
a2 + u2

=
√
a2 + u2 + c

4.

∫
du√
a2 + u2

= ln
∣∣∣u+

√
a2 + u2

∣∣∣+ c

5.

∫
du

u
√
a2 + u2

=
1

a
ln

∣∣∣∣∣
√
a2 + u2

u
− a

u

∣∣∣∣∣+ c

6.

∫ √
a2 + u2 du =

1

2
u
√
a2 + u2 +

a2

2
ln
∣∣∣u+

√
a2 + u2

∣∣∣+ c

Theorem 6.5.3 (u2 − a2 Forms) Suppose that u = a sec t, a > 0. Then

du = a sec t tan t dt, u2 − a2 = a2 tan2 t,
√
u2 − a2 = a tan t, t = arcsec

(u
a

)
,

sin t =

√
u2 − a2

u
, cos t =

a

u
, tan t =

√
u2 − a2

a
,

csc t =
u√

u2 − a2
, sec t =

u

a
, cot t =

a√
u2 − a2

.
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graph

Proof. The proof of this theorem is left as an exercise.

The following integration formulas are valid:

1.

∫
udu

u2 − a2
=

1

2
ln
∣∣u2 − a2

∣∣+ c

2.

∫
du

u2 − a2
=

1

2a
ln

∣∣∣∣u− au+ a

∣∣∣∣+ c

3.

∫
udu√
u2 − a2

=
√
u2 − a2 + c

4.

∫
du√
u2 − a2

= ln
∣∣∣u+

√
u2 − a2

∣∣∣+ c

5.

∫
du

u
√
u2 − a2

=
1

a
arcsec

(u
a

)
+ c

6.

∫ √
u2 − a2 du =

1

2
u
√
u2 − a2 − a2

2
ln
∣∣∣u+

√
u2 − a2

∣∣∣+ c

Exercises 6.5 Prove each of the following formulas:

1.

∫
u du

a2 − u2
= −1

2
ln |a2 − u2|+ C

2.

∫
du

a2 − u2
=

1

2a
ln

∣∣∣∣a− ua+ u

∣∣∣∣+ C

3.

∫
u du√
a2 − u2

= −
√
a2 − u2 + C

4.

∫
du√
a2 − u2

= arcsin
(u
a

)
+ C, a > 0

5.

∫
du

u
√
a2 − u2

=
1

a
ln

∣∣∣∣au −
√
a2 − u2

u

∣∣∣∣+ C
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6.

∫ √
a2 − u2 du =

a2

2
arcsin

(u
a

)
+

1

2
u
√
a2 − u2 + C, a > 0

7.

∫
u du

a2 + u2
=

1

2
ln
∣∣a2 + u2

∣∣+ C

8.

∫
du

a2 + u2
=

1

a
arctan

(u
a

)
+ C

9.

∫
u du√
a2 + u2

=
√
a2 + u2 + C

10.

∫
du√
a2 + u2

= ln
∣∣∣u+

√
a2 + u2

∣∣∣+ C

11.

∫
du

u
√
a2 + u2

=
1

a
ln

∣∣∣∣∣
√
a2 + u2

u
− a

u

∣∣∣∣∣+ C

12.

∫ √
a2 + u2 du =

1

2
u
√
a2 + u2 +

a2

2
ln
∣∣∣u+

√
a2 + u2

∣∣∣+ C

13.

∫
u du

u2 − a2
=

1

2
ln
∣∣u2 − a2

∣∣+ C

14.

∫
du

u2 − a2
=

1

2a
ln

∣∣∣∣u− au+ a

∣∣∣∣+ C

15.

∫
u du√
u2 − a2

=
√
u2 − a2 + C

16.

∫
du√
u2 − a2

= ln
∣∣∣u+

√
u2 − a2

∣∣∣+ C

17.

∫
du

u
√
u2 − a2

=
1

a
arcsec

(u
a

)
+ C

18.

∫ √
u2 − a2 du =

1

2
u
√
u2 − a2 − a2

2
ln
∣∣∣u+

√
u2 − a2

∣∣∣+ C

Evaluate each of the following integrals:
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19.

∫
x dx√
4− x2

20.

∫
dx√

4− x2
21.

∫
x dx

4− x2

22.

∫
dx

4− x2
23.

∫
x dx

9 + x2
24.

∫
dx

9 + x2

25.

∫
x dx√
9 + x2

26.

∫
dx√

9 + x2
27.

∫
x dx

x2 − 16

28.

∫
dx

x2 − 16
29.

∫
x dx√
x2 − 16

30.

∫
dx√
x2 − 16

31.

∫
dx

x
√
x2 − 4

32.

∫
dx

x
√

9− x2
33.

∫
dx

x
√
x2 + 16

34.

∫ √
9− x2 dx 35.

∫ √
4− 9x2 36.

∫
x2

√
1− x2

dx

37.

∫
x2

√
4 + x2

dx 38.

∫
x2

√
x2 − 16

dx 39.

∫
dx

(9 + x2)2

40.

∫
dx

(9− x2)2
41.

∫
dx

(x2 − 16)2
42.

∫
dx

(4 + x2)3/2

43.

∫ √
4 + x2

x
44.

∫ √
x2 − 4

x
dx 45.

∫
dx

x2
√
x2 + 4

46.

∫
dx

x2
√

4− x2
47.

∫
dx

x2
√
x2 − 4

48.

∫
dx

x2 − 2x+ 5

49.

∫
dx

x2 − 4x+ 12
50.

∫
dx√

4x− x2
51.

∫
dx√

x2 − 4x+ 12

52.

∫
dx

4x− x2
53.

∫
dx√

x2 − 2x+ 5
54.

∫
x dx

x2 − 4x− 12

55.

∫
x dx√

x2 − 2x+ 5
56.

∫
x

x2 + 4x+ 13
dx 57.

∫
(5− 4x− x2)1/2dx
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58.

∫
2x+ 7

x2 + 4 + 13
dx 59.

∫
x+ 3√

x2 + 2x+ 5
dx 60.

∫
dx√

4x2 − 1

61.

∫
x+ 4√
9x2 + 16

dx 62.

∫
x+ 2√

16− 9x2
dx 63.

∫
e2xdx

(5− e2x + e4x)1/2

64.

∫
e3xdx

(e6x + 4e3x + 3)1/2

6.6 Integration by Partial Fractions

A polynomial with real coefficients can be factored into a product of powers
of linear and quadratic factors. This fact can be used to integrate rational
functions of the form P (x)/Q(x) where P (x) and Q(x) are polynomials that
have no factors in common. If the degree of P (x) is greater than or equal to
the degree of Q(x), then by long division we can express the rational function
by

P (x)

Q(x)
= q(x) +

r(x)

Q(x)

where q(x) is the quotient and r(x) is the remainder whose degree is less than
the degree of Q(x). Then Q(x) is factored as a product of powers of linear
and quadratic factors. Finally r(x)/Q(x) is split into a sum of fractions of
the form

A1

ax+ b
+

A2

(ax+ b)2
+ · · ·+ An

(ax+ b)n

and
B1x+ c1

ax2 + bx+ c
+

B2x+ c2

(ax2 + bxc)2
+ · · ·+ Bmx+ cm

(ax2 + bx+ c)m
.

Many calculators and computer algebra systems, such as Maple or Mathe-
matica, are able to factor polynomials and split rational functions into partial
fractions. Once the partial fraction split up is made, the problem of inte-
grating a rational function is reduced to integration by substitution using
linear or trigonometric substitutions. It is best to study some examples and
do some simple problems by hand.

Exercises 6.6 Evaluate each of the following integrals:
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1.

∫
dx

(x− 1)(x− 2)(x+ 4)
2.

∫
dx

(x− 4)(10 + x)

3.

∫
dx

(x− a)(x− b)
4.

∫
dx

(x− a)(b− x)

5.

∫
dx

(x2 + 1)(x2 + 4)
6.

∫
dx

(x− 1)(x2 + 1)

7.

∫
2x dx

x2 − 5x+ 6
8.

∫
x dx

(x+ 3)(x+ 4)

9.

∫
x+ 1

(x+ 2)(x2 + 4)
dx 10.

∫
(x+ 2)dx

(x+ 3)(x2 + 1)

11.

∫
2 dx

(x2 + 4)(x2 + 9)
12.

∫
dx

(x2 − 4)(x2 − 9)

13.

∫
x2 dx

(x2 + 4)(x2 + 9)
14.

∫
x dx

(x2 − 4)(x2 − 9)

15.

∫
dx

x4 − 16
16.

∫
x dx

x4 − 81

6.7 Fractional Power Substitutions

If the integrand contains one or more fractional powers of the form xs/r,
then the substitution, x = un, where n is the least common multiple of the
denominators of the fractional exponents, may be helpful in computing the
integral. It is best to look at some examples and work some problems by
hand.

Exercises 6.7 Evaluate each of the following integrals using the given sub-
stitution.

1.

∫
4x3/2

1 + x1/3
dx; x = u6 2.

∫
dx

1 + x1/3
; x = u3
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3.

∫
dx√

1 + e2x
; u2 = 1 + e2x 4.

∫
dx

x
√
x3 − 8

; u2 = x3 − 8

Evaluate each of the following by using an appropriate substitution:

5.

∫
x dx√
x+ 2

6.

∫
x2dx√
x+ 4

7.

∫
1

4 +
√
x
dx 8.

∫
x dx

1 +
√
x

9.

∫ √
x

1 + 3
√
x

10.

∫
x2/3

8 + x1/2

11.

∫
1

x2/3 + 1
dx 12.

∫
dx

1 +
√
x

13.

∫
x dx

1 + x2/3
14.

∫
1 +
√
x

2 +
√
x
dx

15.

∫
1−
√
x

1 + x3/2
dx 16.

∫
1 +
√
x

1− x3/2
dx

6.8 Tangent x/2 Substitution

If the integrand contains an expression of the form (a+b sinx) or (a+b cosx),
then the following theorem may be helpful in evaluating the integral.

Theorem 6.8.1 Suppose that u = tan(x/2). Then

sinx =
2u

1 + u2
, cosx =

1− u2

1 + u2
and dx =

2

1 + u2
du.

Furthermore,∫
dx

a+ b sinx
=

∫
(2/(1 + u2))du

a+ b
(

2u
1+u2

) =

∫
2du

a(1 + u2) + 2bu∫
dx

a+ b cosx
=

∫
(2/(1 + u2))du

a+ b
(

1−u2

1+u2

) =

∫
2du

a(1 + u2) + b(1− u2)
.
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Proof. The proof of this theorem is left as an exercise.

Exercises 6.8

1. Prove Theorem 6.8.1

Evaluate the following integrals:

2.

∫
dx

2 + sinx
3.

∫
dx

sinx+ cosx

4.

∫
dx

sinx− cosx
5.

∫
dx

2 sinx+ 3 cosx

6.

∫
dx

2− sinx
7.

∫
dx

3 + cosx

8.

∫
dx

3− cosx
9.

∫
sinx dx

sinx+ cosx

10.

∫
cosx dx

sinx− cosx
11.

∫
(1 + sinx)dx

(1− sinx)

12.

∫
1− cosx

1 + cosx
dx 13.

∫
2− cosx

2 + cosx
dx

14.

∫
2 + cosx

2− sinx
dx 15.

∫
2− sinx

3 + cosx
dx

16.

∫
dx

1 + sinx+ cosx

6.9 Numerical Integration

Not all integrals can be computed in the closed form in terms of the elemen-
tary functions. It becomes necessary to use approximation methods. Some
of the simplest numerical methods of integration are stated in the next few
theorems.
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Theorem 6.9.1 (Midpoint Rule) If f, f ′ and f ′′ are continuous on [a, b],
then there exists some c such that a < c < b and∫ b

a

f(x)dx = (b− a)f

(
a+ b

2

)
+
f ′′(c)

24
(b− a)3.

Proof. The proof of this theorem is omitted.

Theorem 6.9.2 (Trapezoidal Rule) If f, f ′ and f ′′ are continuous on [a, b],
then there exists some c such that a < c < b and∫ b

a

f(x)dx = (b− a)

[
1

2
(f(a) + f(b))

]
− f ′′(c)

12
(b− a)3.

Proof. The proof of this theorem is omitted.

Theorem 6.9.3 (Simpson’s Rule) If f, f ′, f ′′, f (3) and f (4) are continuous
on [a, b], then there exists some c such that a < c < b and∫ b

a

f(x)dx =
b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− f (4)(c)

2880
(b− a)5.

These basic numerical formulas can be applied on each subinterval [xi, xi+1]
of a partition P = {a = x0 < x1 < · · · < xn = b} of the interval [a, b]
to get composite numerical methods. We assume that h = (b − a)/n, xi =
a+ ih, i = 0, 1, 2, · · · , n.

Proof. The proof of this theorem is omitted.

Theorem 6.9.4 (Composite Trapezoidal Rule) If f, f ′ and f ′′ are continu-
ous on [a, b], then there exists some c such that a < c < b and∫ b

a

f(x)dx =
h

2

[
f(a) + 2

n−1∑
i=1

f(xi) + f(b)

]
− b− a

12
h2f ′′(c).

Proof. The proof of this theorem is omitted.

Theorem 6.9.5 (Composite Simpson’s Rule) If f, f ′, f ′′, f (3) and f (4) are
continuous on [a, b], then there exists some c such that a < c < b and∫ b

a

f(x)dx =
h

3

f(a) + 2

n/2−1∑
i=1

f(x2i) + 4

n/2∑
i=1

f(x2i−1) + f(b)

−b− a
180

h4f (4)(c).

where n is an even natural number.
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Proof. The proof of this theorem is omitted.

Remark 22 In practice, the composite Trapezoidal and Simpson’s rules can
be applied when the value of the function is known at the subdivision points
xi, i = 0, 1, 2, · · · , n.

Exercises 6.9 Approximate the value of each of the following integrals for
a given value of n and using

(a) Left-hand end point approximation:
n∑
i=1

f(xi−1)(xi − xi−1)

(b) Right-hand end point approximation:
n∑
i=1

f(xi)(xi − xi−1)

(c) Mid point approximation:
n∑
i=1

f

(
xi−1 + xi

2

)
(xi − xi−1)

(d) Composite Trapezoidal Rule
(e) Composite Simpson’s Rule

1.

∫ 3

1

1

x
dx, n = 10 2.

∫ 4

2

1√
x
dx, n = 10

3.

∫ 1

0

1

1 +
√
x
dx, n = 10 4.

∫ 2

1

1

1 + x2
dx, n = 10

5.

∫ 1

0

1 +
√
x

1 + x
dx, n = 10 6.

∫ 2

0

x3 dx, n = 10

7.

∫ 2

0

(x2 − 2x) dx, n = 10 8.

∫ 1

0

(1 + x2)1/2dx, n = 10

9.

∫ 1

0

(1 + x3)1/2dx, n = 10 10.

∫ 1

0

(1 + x4)1/2dx, n = 10



Chapter 7

Improper Integrals and
Indeterminate Forms

7.1 Integrals over Unbounded Intervals

Definition 7.1.1 Suppose that a function f is continuous on (−∞,∞).
Then we define the following improper integrals when the limits exist∫ ∞

a

f(x)dx = lim
b→∞

∫ b

a

f(x)dx (1)∫ b

−∞
f(x)dx = lim

a→−∞

∫ b

a

f(x)dx (2)∫ ∞
−∞

f(x)dx =

∫ c

−∞
f(x)dx+

∫ ∞
c

f(x)dx (3)

provided the integrals on the right hand side exist for some c. If these im-
proper integrals exist, we say that they are convergent; otherwise they are
said to be divergent.

Definition 7.1.2 Suppose that a function f is continuous on [0,∞). Then
the Laplace transform of f , written L(f) or F (s), is defined by

L(f) = F (s) =

∫ ∞
0

e−stf(t)dt.

294
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Theorem 7.1.1 The Laplace transform has the following properties:

L(c) =
c

s
(4)

L(eat) =
1

s− a
(5)

L(cosh at) =
s

s2 − a2
(6)

L(sinh at) =
a

s2 − a2
(7)

L(cosωt) =
s

s2 + ω2
(8)

L(sinωt) =
ω

s2 + ω2
(9)

L(t) =
1

s2
(10)

Proof.

(i) L(c) =

∫ ∞
0

ce−stdt

=
ce−st

−s

∣∣∣∣∞
0

=
c

s
.

(ii) L(eat) =

∫ ∞
0

eate−stdt

=

∫ ∞
0

e−(s−a)tdt

=
e−(s−a)t

−(s− a)

∣∣∣∣∞
0

=
1

s− a



296CHAPTER 7. IMPROPER INTEGRALS AND INDETERMINATE FORMS

provided s > a.

(iii) L(cosh at) =

∫ ∞
0

(
eat + e−at

2

)
e−stdt

=
1

2
[L(eat) + L(e−at)]

=
1

2

[
1

s− a
+

1

s+ a

]

=
s

s2 − a2
, s > |a|.

(iv) L(sinh at) =

∫ ∞
0

1

2
(eat − e−at)e−stdt

=
1

2

[
1

s− a
− 1

s+ a

]
, s > |a|

=
a

s2 − a2
, s > |a|.

(v) L(cosωt) =

∫ ∞
0

cosωte−stdt

=
1

ω2 + s2

[
e−st(−s cosωt+ ω sinωt)

]∞
0

=
s

ω2 + s2
.

(vi) L(sinωt) =

∫ ∞
0

sinωte−stdt

=
1

ω2 + s2

[
e−st(−s sinωt− ω cosωt)

]∞
0

=
ω

ω2 + s2
.
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(vii) L(t) =

∫ ∞
0

te−stdt; (u = t, dv = e−stdt)

=
te−st

−s

∣∣∣∣∞
0

+

∫ ∞
0

e−st

s
dt

=
e−st

−s2

∣∣∣∣∞
0

=
1

s2
.

This completes the proof of Theorem 7.1.1.

Theorem 7.1.2 Suppose that f and g are continuous on [a,∞) and 0 ≤
f(x) ≤ g(x) on [a,∞).

(i) If

∫ ∞
a

g(x)dx converges, then

∫ ∞
a

f(x)dx converges.

(ii) If

∫ ∞
a

f(x)dx diverges, then

∫ ∞
a

g(x)dx diverges.

Proof. The proof of this follows from the order properties of the integral
and is omitted.

Definition 7.1.3 For each x > 0, the Gamma function, denoted Γ(x), is
defined by

Γ(x) =

∫ ∞
0

tx−1e−tdt.

Theorem 7.1.3 The Gamma function has the following properties:

Γ(1) = 1 (11)

Γ(x+ 1) = xΓ(x) (12)

Γ(n+ 1) = n!, n = natural number (13)
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Proof.

Γ(1) =

∫ ∞
0

e−tdt

= −e−t
∣∣∞
0

= 1

Γ(x+ 1) =

∫ ∞
0

txe−tdt; (u = tx, dv = e−tdt)

= −txe−t
∣∣∞
0

+ x

∫ ∞
0

tx−1e−tdt

= xΓ(x), x > 0

Γ(2) = 1Γ(1) = 1

Γ(3) = 2Γ(2) = 1 · 2 = 2!

If Γ(k) = (k − 1)!, then

Γ(k + 1) = kΓ(k)

= k((k − 1)!)

= k!.

By the principle of mathematical induction,

Γ(n+ 1) = n!

for all natural numbers n. This completes the proof of this theorem.

Theorem 7.1.4 Let f be the normal probability distribution function defined
by

f(x) =
1

σ
√

2π
e
−
(
x−µ√

2σ

)2

where µ is the constant mean of the distribution and σ is the constant stan-
dard deviation of the distribution. Then the improper integral∫ ∞

−∞
f(x)dx = 1.

Let F be the normal distribution function defined by

F (x) =

∫ x

−∞
f(x)dx.
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Then F (b)−F (a) represents the percentage of normally distributed data that
lies between a and b. This percentage is given by∫ b

a

f(x)dx.

Furthermore, ∫ µ+bσ

µ+aσ

f(x)dx =

∫ b

a

1√
2π

e−x
2/2dx.

Proof. The proof of this theorem is omitted.

Exercises 7.1 None available.

7.2 Discontinuities at End Points

Definition 7.2.1 (i) Suppose that f is continuous on [a, b) and

lim
x→b−

f(x) = +∞ or −∞.

Then, we define ∫ b

a

f(x)dx = lim
x→b−

∫ x

a

f(x)dx.

If the limit exists, we say that the improper integral converges; otherwise we
say that it diverges.

(ii) Suppose that f is continuous on (a, b] and

lim
x→a+

f(x) = +∞ or −∞.

Then we define, ∫ b

a

f(x)dx = lim
x→a+

∫ b

x

f(x)dx.

If the limit exists, we say that the improper integral converges; otherwise we
say that it diverges.

Exercises 7.2

1. Suppose that f is continuous on (−∞,∞) and g′(x) = f(x). Then define
each of the following improper integrals:
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(a)

∫ +∞

a

f(x)dx

(b)

∫ b

−∞
f(x)dx

(c)

∫ +∞

−∞
f(x)dx

2. Suppose that f is continuous on the open interval (a, b) and g′(x) = f(x)
on (a, b). Define each of the following improper integrals if f is not
continuous at a or b:

(a)

∫ x

a

f(x)dx, a ≤ x < b

(b)

∫ b

x

f(x)dx, a < x ≤ b

(c)

∫ b

a

f(x)dx

3. Prove that

∫ +∞

0

e−xdx = 1

4. Prove that

∫ 1

0

1√
1− x2

dx =
π

2

5. Prove that

∫ +∞

−∞

1

1 + x2
dx = π

6. Prove that

∫ ∞
1

1

xp
dx =

1

p− 1
, if and only if p > 1.

7. Show that

∫ +∞

−∞
e−x

2

dx = 2

∫ ∞
0

e−x
2

dx. Use the comparison between

e−x and e−x
2
. Show that

∫ +∞

−∞
e−x

2

dx exists.

8. Prove that

∫ 1

0

dx

xp
converges if and only if p < 1.
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9. Evaluate

∫ +∞

0

e−x sin(2x)dx.

10. Evaluate

∫ +∞

0

e−4x cos(3x)dx.

11. Evaluate

∫ +∞

0

x2e−xdx.

12. Evaluate

∫ +∞

0

xe−xdx.

13. Prove that

∫ ∞
0

sin(2x)dx diverges.

14. Prove that

∫ ∞
0

cos(3x)dx diverges.

15. Compute the volume of the solid generated when the area between the
graph of y = e−x

2
and the x-axis is rotated about the y-axis.

16. Compute the volume of the solid generated when the area between the
graph of y = e−x, 0 ≤ x <∞ and the x-axis is rotated

(a) about the x-axis

(b) about the y-axis.

17. Let A represent the area bounded by the graph y =
1

x
, 1 ≤ x < ∞

and the x-axis. Let V denote the volume generated when the area A is
rotated about the x-axis.

(a) show that A is +∞
(b) show that V = π

(c) show that the surface area of V is +∞.

(d) Is it possible to fill the volume V with paint and not be able to paint
its surface? Explain.

18. Let A represent the area bounded by the graph of y = e−2x, 0 ≤ x <∞,
and y = 0.
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(a) Compute the area of A.

(b) Compute the volume generated when A is rotated about the x-axis.

(c) Compute the volume generated when A is rotated about the y-axis.

19. Assume that

∫ +∞

0

sin(x2)dx =
√

(π/8). Compute

∫ +∞

0

sinx√
x
dx.

20. It is known that

∫ +∞

−∞
e−x

2

=
√
π.

(a) Compute

∫ +∞

0

e−x
2

dx.

(b) Compute

∫ +∞

0

e−x√
x
dx.

(c) Compute

∫ +∞

0

e−4x2

dx.

Definition 7.2.2 Suppose that f(t) is continuous on [0,∞) and there exist
some constants a > 0, M > 0 and T > 0 such that |f(t)| < Meat for all
t ≥ T . Then we define the Laplace transform of f(t), denoted L{f(t)}, by

L{f(t)} =

∫ ∞
0

e−stf(t)dt

for all s ≥ s0. In problems 21–34, compute L{f(t)} for the given f(t).

21. f(t) =

{
1 if t ≥ 0

0 if t < 0
22. f(t) = t

23. f(t) = t2 24. f(t) = t3

25. f(t) = tn, n = 1, 2, 3, · · · 26. f(t) = ebt

27. f(t) = tebt 28. f(t) = tnebt, n = 1, 2, 3, · · ·
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29. f(t) =
eat − ebt

a− b
30. f(t) =

aeat − bebt

a− b

31. f(t) =
1

b
sin(bt) 32. f(t) = cos(bt)

33. f(t) =
1

b
sinh(bt) 34. f(t) = cosh(bt)

Definition 7.2.3 For x > 0, we define the Gamma function Γ(x) by

Γ(x) =

∫ +∞

0

tx−1e−tdt.

In problems 35–40 assume that Γ(x) exists for x > 0 and

∫ +∞

0

e−x
2

=
1

2

√
π.

35. Show that Γ(1/2) =
√
π 36. Show that Γ(1) = 1

37. Prove that Γ(x+ 1) = xΓ(x) 38. Show that Γ

(
3

2

)
=

√
π

2

39. Show that Γ

(
5

2

)
=

3

4

√
π 40. Show that Γ(n+ 1) = n!

In problems 41–60, evaluate the given improper integrals.

41.

∫ +∞

0

2xe−x
2

dx 42.

∫ +∞

1

dx

x3/2

43.

∫ +∞

4

dx

x5/2
44.

∫ +∞

1

4x

1 + x2
dx

45.

∫ +∞

1

x

(1 + x2)3/2
dx 46.

∫ +∞

16

4

x2 − 4
dx

47.

∫ +∞

2

1

x(lnx)2
dx 48.

∫ +∞

2

1

x(lnx)p
dx, p > 1
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49.

∫ 1

−∞
3xe−x

2

dx 50.

∫ 2

−∞
ex dx

51.

∫ ∞
0

2

ex + e−x
dx 52.

∫ ∞
−∞

dx

x2 + 9

53.

∫ 2

0

dx√
4− x2

54.

∫ 4

0

x√
16− x2

dx

55.

∫ 5

0

x

(25− x2)2/3
dx 56.

∫ +∞

2

dx

x
√
x2 − 4

57.

∫ +∞

0

e−
√
x

√
x
dx 58.

∫ ∞
0

dx√
x(x+ 25)

59.

∫ ∞
0

e−x√
1− (e−x)2

dx 60.

∫ +∞

0

x2e−x
3

dx

7.3

Theorem 7.3.1 (Cauchy Mean Value Theorem) Suppose that two functions
f and g are continuous on the closed interval [a, b], differentiable on the open
interval (a, b) and g′(x) 6= 0 on (a, b). Then there exists at least one number
c such that a < c < b and

f ′(c)

g′(c)
=
f(b)− f(a)

g(b)− g(a)
.

Proof. See the proof of Theorem 4.1.6.

Theorem 7.3.2 Suppose that f and g are continuous and differentiable on
an open interval (a, b) and a < c < b. If f(c) = g(c) = 0, g′(x) 6= 0 on (a, b)
and

lim
x→c

f ′(x)

g′(x)
= L

then

lim
x→c

f(x)

g(x)
= L.
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Proof. See the proof of Theorem 4.1.7.

Theorem 7.3.3 (L’Hôpital’s Rule) Let lim represent one of the limits

lim
x→c

, lim
x→c+

, lim
x→c−

, lim
x→+∞

, or lim
x→−∞

.

Suppose that f and g are continuous and differentiable on an open interval
(a, b) except at an interior point c, a < c < b. Suppose further that g′(x) 6= 0
on (a, b), lim f(x) = lim g(x) = 0 or lim f(x) = lim g(x) = +∞ or −∞. If

lim
f ′(x)

g′(x)
= L,+∞ or −∞

then

lim
f(x)

g(x)
= lim

f ′(x)

g′(x)
.

Proof. The proof of this theorem is omitted.

Definition 7.3.1 (Extended Arithmetic) For the sake of convenience in deal-
ing with indeterminate forms, we define the following arithmetic operations
with real numbers, +∞ and −∞. Let c be a real number and c > 0. Then
we define

+∞+∞ = +∞, −∞−∞ = −∞, c(+∞) = +∞, c(−∞) = −∞

(−c)(+∞) = −∞, (−c)(−∞) = +∞, c

+∞
= 0,

−c
+∞

= 0,
c

−∞
= 0,

−c
−∞

= 0, (+∞)c = +∞, (+∞)−c = 0, (+∞)(+∞) = +∞, (+∞)(−∞) = −∞,

(−∞)(−∞) = +∞.

Definition 7.3.2 The following operations are indeterminate:

0

0
,

+∞
+∞

,
+∞
−∞

−∞
−∞

,
−∞
+∞

, ∞−∞, 0 · ∞, 00, 1∞, ∞0.

Remark 23 The L’Hôpital’s Rule can be applied directly to the 0
0

and ±∞
±∞

forms. The forms ∞ − ∞ and 0 · ∞ can be changed to the 0
0

or ±∞±∞ by
using arithmetic operations. For the 00 and 1∞ forms we use the following
procedure:

lim(f(x))g(x) = lim eg(x) ln(f(x)) = elim
ln(f(x))
(1/g(x)) .

It is best to study a lot of examples and work problems.
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Exercises 7.3

1. Prove the Theorem of the Mean: Suppose that a function f is continuous
on a closed and bounded interval [a, b] and f ′ exists on the open interval
(a, b). Then there exists at least one number c such that a < c < b and

(1)
f(b)− f(a)

b− a
= f ′(c) (2) f(b) = f(a) + f ′(c)(b− a).

2. Prove the Generalized Theorem of the Mean: Suppose that f and g are
continuous on a closed and bounded interval [a, b] and f ′ and g′ exist
on the open interval (a, b) and g′(x) 6= 0 for any x in (a, b). Then there
exists some c such that a < c < b and

f(b)− f(a)

g(b)− g(a)
=
f ′(c)

g′(c)
.

3. Prove the following theorem known as l’Hôpital’s Rule: Suppose that f
and g are differentiable functions, except possibly at a, such that

lim
x→a

f(x) = 0, lim
x→a

g(x) = 0, and lim
x→a

f(x)

g(x)
= L.

Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
= L.

4. Prove the following theorem known as an alternate form of l’Hôpital’s
Rule: Suppose that f and g are differentiable functions, except possibly
at a, such that

lim
x→a

f(x) =∞, lim
x→a

g(x) =∞, and lim
x→a

f ′(x)

g′(x)
= L.

Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
= L.
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5. Prove that if f ′ and g′ exist and

lim
x→+∞

f(x) = 0, lim
x→+∞

g(x) = 0, and lim
x→+∞

f ′(x)

g′(x)
= L,

then

lim
x→+∞

f(x)

g(x)
= L.

6. Prove that if f ′ and g′ exist and

lim
x→−∞

f(x) = 0, lim
x→+∞

g(0) = 0, and lim
x→−∞

f ′(x)

g′(x)
= L,

then

lim
x→−∞

f(x)

g(x)
= L.

7. Prove that if f ′ and g′ exist and

lim
x→+∞

f(x) =∞, lim
x→+∞

g(x) =∞, and lim
x→+∞

f ′(x)

g′(x)
= L,

then

lim
x→+∞

f(x)

g(x)
= L.

8. Prove that if f ′ and g′ exist and

lim
x→−∞

f(x) =∞, lim
x→−∞

g(x) =∞, and lim
x→−∞

f ′(x)

g′(x)
= L,

then

lim
x→+∞

f(x)

g(x)
= L.

9. Suppose that f ′ and f ′′ exist in an open interval (a, b) containing c. Then
prove that

lim
h→0

f(c+ h)− 2f(c) + f(c− h)

h2
= f ′′(c).
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10. Suppose that f ′ is continuous in an open interval (a, b) containing c.
Then prove that

lim
h→0

f(c+ h)− f(c− h)

2h
= f ′(c).

11. Suppose that f(x) and g(x) are two polynomials such that

f(x) = a0x
n + a1x

n−1 + · · ·+ an−1x+ an, a0 6= 0,

g(x) = b0x
m + b1x

m−1 + · · ·+ bm−1x+ bm, b0 6= 0.

Then prove that

lim
x→+∞

f(x)

g(x)
=


0 if m > n

+∞ or −∞ if m < n

a0/b0 if m = n

12. Suppose that f and g are differentiable functions, except possibly at c,
and

lim
x→c

f(x) = 0, lim
x→c

g(x) = 0 and lim
x→c

g(x) ln(f(x)) = L.

Then prove that
lim
x→c

(f(x))g(x) = eL.

13. Suppose that f and g are differentiable functions, except possibly at c,
and

lim
x→c

f(x) = +∞, lim
x→c

g(x) = 0 and lim
x→c

g(x) ln(f(x)) = L.

Then prove that
lim
x→c

(f(x))g(x) = eL.

14. Suppose that f and g are differentiable functions, except possibly at c,
and

lim
x→c

f(x) = 1, lim
x→c

g(x) = +∞ and lim
x→c

g(x) ln(f(x)) = L.

Then prove that
lim
x→c

(f(x))g(x) = eL.
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15. Suppose that f and g are differentiable functions, except possibly at c,
and

lim
x→c

f(x) = 0, lim
x→c

g(x) = +∞ and lim
x→c

f(x)

(1/g(x))
= L.

Then prove that
lim
x→c

f(x)g(x) = L.

16. Prove that lim
x→0

(1 + x)
1
x = e.

17. Prove that lim
x→0

(1− x)
1
x =

1

e
.

18. Prove that lim
x→+∞

xn

ex
= 0 for each natural number n.

19. Prove that lim
x→0+

sinx− x
x sinx

= 0.

20. Prove that lim
x→π

2

(π
2
− x
)

tanx = 1.

In problems 21–50 evaluate each of the limits.

21. lim
x→0

sin(x2)

x2
22. lim

x→0

1− cosx2

x2

23. lim
x→0

sin(ax)

sin(bx)
24. lim

x→0

tan(mx)

tan(nx)

25. lim
x→0

e3x − 1

x
26. lim

x→0
(1 + 2x)3/x

27. lim
h→0

ln(x+ h)− ln(x)

h
28. lim

h→0

ex+h − ex

h

29. lim
x→0

(1 +mx)n/x 30. lim
x→∞

ln(100 + x)

x
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31. lim
x→0

(1 + sinmx)n/x 32. lim
x→0+

(sinx)x

33. lim
x→0+

(x)sinx 34. lim
x→∞

x4 − 2x3 + 10

3x4 + 2x3 − 7x+ 1

35. lim
x→0+

tan(2x) ln(x) 36. lim
x→+∞

x sin

(
2π

x

)

37. lim
x→0

(x+ ex)2/x 38. lim
x→∞

(
3 + 2x

4 + 2x

)x
39. lim

x→0
(1 + sinmx)n/x 40. lim

x→0+
(x)sin(3x)

41. lim
x→0+

(e3x − 1)2/ lnx 42. lim
x→0

(
1

x2
− cos 4x

x2

)

43. lim
x→0+

cot(ax)

cot(bx)
44. lim

x→+∞

lnx

x

45. lim
x→0+

x

lnx
46. lim

x→0+

(
1

x
− 2

lnx

)

47. lim
x→+∞

2x+ 3 sinx

4x+ 2 sinx
48. lim

x→+∞
x(b1/x − 1), b > 0, b 6= 1

49. lim
h→0

(
bx+h − bx

h

)
, b > 0, b 6= 1 50. lim

h→0

logb(x+ h)− logb x

h
, b > 0, b 6= 1

51. lim
x→0

(ex − 1) sinx

cosx− cos2 x
52. lim

x→+∞
x ln

(
x+ 1

x− 1

)

53. lim
x→0+

sin 5x

1− cos 4x
54. lim

x→1

2x− 3x6 + x7

(1− x)3

55. lim
x→+∞

ex ln

(
ex + 1

ex

)
56. lim

x→0

tanx− sinx

x3
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57. lim
x→0

x3 sin 2x

(1− cosx)2
58. lim

x→0

5x − 3x

x2

59. lim
x→0

1

x
ln

(
1 + x

1− x

)
60. lim

x→0

arctanx− x
x3

61. lim
x→0

sin(π cosx)

x sinx
62. lim

x→+∞

ln(1 + xe2x)

x2

63. lim
x→+∞

(lnx)n

x
, n = 1, 2, · · · 64. lim

x→+∞

1√
x

ln

(
x+ e2x

x

)

65. lim
x→+∞

lnx

(1 + x3)1/2
66. lim

x→0+

ln(tan 3x)

ln(tan 4x)

67. lim
x→0+

(1− 3−x)−2x 68. lim
x→0

(
sinx

x

)1/x2

69. lim
x→+∞

(e−x + e−2x)1/x 70. lim
x→+∞

(
cos

(
3

x

))x2

71. lim
x→0+

(
ln

(
1

x

))x
72. lim

x→+∞

(
1 +

1

2x

)x2

73. lim
x→+∞

(
1 +

1

2x

)3x+lnx

74. lim
x→0

(
1

x
− 1

sin 2x

)

75. lim
x→+∞

x
(√

x2 + b2 − x
)

76. lim
x→0

(
1

x sinx
− 1

x2

)

77. lim
x→2

(
1

x− 2
− 5

x2 + x− 6

)
78. lim

x→0+

(
1

x
− ln

(
1

x

))

79. lim
x→0

(
cotx− 1

x

)
80. lim

x→0

(
1

x2
− 1

tan2 x

)
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81. lim
x→0

(
e−x

x
− 1

ex − 1

)
82. lim

x→∞

x− sinx

x

83. lim
x→0

x2 sin
(

1
x

)
sinx

84. lim
x→∞

x sin

(
1

x

)

85. lim
x→0

e− (1 + x)1/x

x
86. lim

x→+∞

ln(lnx)

ln(x− lnx)

87. lim
x→0+

(
1

x2
− 1

x lnx

)
88. lim

x→+∞

1

x

∫ x

1

ln t

1 + t
dt

89. lim
x→+∞

(ln(1 + ex)− x) 90. lim
x→+∞

1

x2

(∫ x

0

sin2 x dx

)

91. Suppose that f is defined and differentiable in an open interval (a, b).
Suppose that a < c < b and f ′′(c) exists. Prove that

f ′′(c) = lim
x→c

f(x)− f(c)− (x− c)f ′(c)
((x− c)2/2!)

.

92. Suppose that f is defined and f ′, f ′′, · · · , f (n−1) exist in an open interval
(a, b). Also, suppose that a < c < b and f (n)(c) exists

(a) Prove that

f (n)(c) = lim
x→c

f(x)− f(c)− (x− c)f ′(c)− · · · − (x−c)n−1

(n−1)!
fn−1(c)

(x−c)n
n!

.

(b) Show that there is a function En(x) defined on (a, b), except possibly
at c, such that

f(x) = f(c) + (x− c)f ′(c) + · · ·+ (x− c)n−1

(n− 1)!
f (n−1)(x)

+
(x− c)n

n!
f (n)(c) + En(x)

(x− c)nEn(x)

n!
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and lim
n→c

En(x) = 0. Find E2(x) if c = 0 and

f(x) =

{
x4 sin

(
1
x

)
, x 6= 0

0 , x = 0

(c) If f ′(c) = · · · = f (n−1)(c) = 0, n is even, and f has a relative mini-
mum at x = c, then show that f (n)(c) ≥ 0. What can be said if f has
a relative maximum at c? What are the sufficient conditions for a rel-
ative maximum or minimum at c when f ′(c) = · · · = f (n−1)(c) = 0?
What can be said if n is odd and f ′(c) = · · · = f (n−1)(c) = 0 but
f (n)(c) 6= 0.

93. Suppose that f and g are defined, have derivatives of order 1, 2, · · · , n−1
in an open interval (a, b), a < c < b, f (n)(c) and g(n)(c) exist and g(n)(c) 6=
0. Prove that if f and g, as well as their first n − 1 derivatives are 0,
then

lim
x→c

f(x)

g(x)
=
f (n)(c)

g(n)(c)
.

Evaluate the following limits:

94. lim
x→0

(
x2 sin 1

x

x

)
95. lim

x→0

cos
(
π
2

cosx
)

sin2 x

96. lim
x→1

x( 1
1−x) 97. lim

x→0+
x(ln(x))n, n = 1, 2, 3, · · ·

98. lim
x→1+

xx − x
1− x+ lnx

99. lim
x→+∞

x3/2 lnx

(1 + x4)1/2

100. lim
x→+∞

xn ln

(
1 + ex

ex

)
, n = 1, 2, · · ·

101. lim
x→0

x
∫ x

0
e−t

2
dx

1− e−x2
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7.4 Improper Integrals

1. Suppose that f is continuous on (−∞,∞) and g′(x) = f(x). Then define
each of the following improper integrals:



Chapter 8

Infinite Series

8.1 Sequences

Definition 8.1.1 An infinite sequence (or sequence) is a function, say f ,
whose domain is the set of all integers greater than or equal to some integer
m. If n is an integer greater than or equal to m and f(n) = an, then we
express the sequence by writing its range in any of the following ways:

1. f(m), f(m+ 1), f(m+ 2), . . .

2. am, am+1, am+2, . . .

3. {f(n) : n ≥ m}

4. {f(n)}∞n=m

5. {an}∞n=m

Definition 8.1.2 A sequence {an}∞n=m is said to converge to a real number
L (or has limit L) if for each ε > 0 there exists some positive integer M such
that |an − L| < ε whenever n ≥M . We write,

lim
n→∞

an = L or an → L as n→∞.

If the sequence does not converge to a finite number L, we say that it diverges.

315
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Theorem 8.1.1 Suppose that c is a positive real number, {an}∞n=m and {bn}∞n=m

are convergent sequences. Then

(i) lim
n→∞

(can) = c lim
n→∞

an

(ii) lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn

(iii) lim
n→∞

(an − bn) = lim
n→∞

an − lim
n→∞

bn

(iv) lim
n→∞

(anbn) = lim
n→∞

an lim
n→∞

bn

(v) lim
n→∞

(
an
bn

)
=

limn→∞ an
limn→∞ bn

, if lim
n→∞

bn 6= 0.

(vi) lim
n→∞

(an)c =
(

lim
n→∞

an

)c
(vii) lim

n→∞
(ean) = elimn→∞ an

(viii) Suppose that an ≤ bn ≤ cn for all n ≥ m and

lim
n→∞

an = lim
n→∞

cn = L.

Then
lim
n→∞

bn = L.

Proof. Suppose that {an}∞n=m converges to a and {bn}∞n=m converges to b.
Let ε1 > 0 be given. Then there exist natural numbers N and M such that

|an − a| < ε1 if n ≥ N, (1)

|bn − b| < ε1 if n ≥M. (2)

Part (i) Let ε > 0 be given and c 6= 0. Let ε1 =
ε

2|c|
and n ≥ N +M . Then

by the inequalities (1) and (2), we get

|can − ca| = |c| |an − a|
< |c| ε1
< ε.
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This completes the proof of Part (i).

Part (ii) Let ε > 0 be given and ε1 =
ε

2
. Let m ≥ N + M . Then by the

inequalities (1) and (2), we get

|(an + bn)− (a+ b)| = |(an − a) + (bn − b)|
≤ |an − a|+ |bn − b|
< ε1 + ε1

= ε.

This completes the proof of Part (ii).

Part (iii)

lim
n→∞

(an − bn) = lim
n→∞

(an + (−1)bn)

= lim
n→∞

an + lim
n→∞

[(−1)bn] (by Part (ii))

= lim
n→∞

an + (−1) lim
n→∞

bn (by Part (i))

= a+ (−1)b

= a− b.

Part (iv) Let ε > 0 be given and ε1 = min

(
1,

ε

1 + |a|+ |b|

)
. If n ≥ N +M ,

then by the inequalities (1) and (2) we have

|anbn − ab| = |[(an − a) + a][(bn − b) + b]− ab|
= |(an − a)(bn − b) + (an − a)b+ a(bn − b|
≤ |an − a| |bn − b|+ |b| |an − a|+ |a| |bn − b|
< ε21 + |b|ε1 + |a|ε1
= ε1(ε1 + |b|+ |a|)
≤ ε1(1 + |b|+ |a|)
≤ ε.

Part (v) First we assume that b > 0 and prove that

lim
n→∞

1

bn
=

1

b
.
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By taking ε1 =
1

2
b and using inequality (2) for n ≥M , we get

|bn − b| <
1

2
b, −1

2
b < bn − b <

1

2
b,

1

2
b < bn <

3

2
b, 0 <

2

3b
<

1

bn
<

2

b
.

Then, for n ≥M , we get∣∣∣∣ 1

bn
− 1

b

∣∣∣∣ =

∣∣∣∣ b− bnb− nb

∣∣∣∣
= |bn − b| ·

1

b
· 1

bn

< |bn − b| ·
2

b2
. (3)

Let ε > 0 be given. Choose ε2 = min

(
b

2
,
εb2

2

)
. There exists some natural

number N such that if n ≥ N , then

|bn − b| < ε2. (4)

If n ≥ N +M , then the inequalities (3) and (4) imply that∣∣∣∣ 1

bn
− 1

b

∣∣∣∣ < |bn − b| 2

b2

< ε2
2

b2

≤ ε.

It follows that

lim
n→∞

1

bn
=

1

b

lim
n→∞

(
an
bn

)
= lim

n→∞
(an) · lim

n→∞

(
1

bn

)
= a ·

(
1

b

)
=
a

b
.
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If b < 0, then

lim
n→∞

(
an
bn

)
= lim

n→∞
(−an) · lim

n→∞

(
1

−bn

)
= (−a)

(
1

−b

)
=
a

b
.

This completes the proof of Part (v).

Part (vi) Since f(x) = xc is a continuous function,

lim
n→∞

(an)c =
(

lim
n→∞

an

)c
= ac.

Part (vii) Since f(x) = ex is a continuous function,

lim
n→∞

ean = elimn→∞ an = ea.

Part (viii) Suppose that an ≤ bn ≤ cn for all n ≥ m and

lim
n→∞

an = L = lim
n→∞

cn = L.

Let ε > 0 be given. Then there exists natural numbers N and M such that

|an − L| <
ε

2
,
−ε
2
< an − L <

ε

2
for n ≥ N,

|cn − L| <
ε

2
,
−ε
2
< cn − L <

ε

2
for n ≥M.

If n ≥ N +M , then n > N and n > M and, hence,

− ε
2
< an − L ≤ bn − L ≤ cn − L <

ε

2
.

It follows that

lim
n→∞

bn = L.

This completes the proof of this theorem.
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8.2 Monotone Sequences

Definition 8.2.1 Let {tn}∞n=m be a given sequence. Then {tn}∞n=m is said
to be

(a) increasing if tn < tn+1 for all n ≥ m;

(b) decreasing if tn+1 < tn for all n ≥ m;

(c) nondecreasing if tn ≤ tn+1 for all n ≥ m;

(d) nonincreasing if tn+1 ≤ tn for all n ≥ m;

(e) bounded if a ≤ tn ≤ b for some constants a and b and all n ≥ m;

(f) monotone if {tn}∞n=m is increasing, decreasing, nondecreasing or nonin-
creasing.

(g) a Cauchy sequence if for each ε > 0 there exists some M such that
|an1 − an2| < ε whenever n1 ≥M and n2 ≥M .

Theorem 8.2.1 (a) A monotone sequence converges to some real number if
and only if it is a bounded sequence.

(b) A sequence is convergent if and only if it is a Cauchy sequence.

Proof.
Part (a) Suppose that an ≤ an+1 ≤ B for all n ≥ M and some B. Let L be
the least upper bound of the sequence {an}∞n=m. Let ε > 0 be given. Then
there exists some natural number N such that

L− ε < aN ≤ L.

Then for each n ≥ N , we have

L− ε < aN ≤ an ≤ L.

By definition {an}∞n=m converges to L.
Similarly, suppose that B ≤ an+1 ≤ an for all n ≥ M . Let L be the

greatest lower bound of {an}∞n=m. Then {an}∞n=m converges to L. It follows
that a bounded monotone sequence converges. Conversely, suppose that a
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monotone sequence {an}∞n=m converges to L. Let ε = 1. Then there exists
some natural number N such that if n ≥ N , then

|an − L| < ε

−ε < an − L < ε

L− ε < an < L+ ε.

The set {an : m ≤ n ≤ N} is bounded and the set {an : n ≥ N} is bounded.
It follows that {an}∞n=m is bounded. This completes the proof of Part (a) of
the theorem.

Part (b) First, let us suppose that {an}∞n=m converges to L. Let ε > 0 be

given. Then
ε

2
> 0 and hence there exists some natural number N such that

for all natural numbers p ≥ N and q ≥ N , we have

|ap − L| <
ε

2
and |aq − L| <

ε

2
|ap − aq| = |(ap − L) + (L+ aq)|

≤ |ap − L|+ |a1 − L|

<
ε

2
+
ε

2
= ε.

It follows that {an}∞n=m is a Cauchy sequence.

Next, we suppose that {an}∞n=m is a Cauchy sequence. Let S = {an : m ≤
n < ∞}. Suppose ε > 0. Then there exists some natural number N such
that for all p ≥ 1

|aN+p − aN | <
ε

2
, aN −

ε

2
< aN+p < aN +

ε

2
(1)

It follows that S is a bounded set. If S is an infinite set, then S has some
limit point q and some subsequence {ank}

∞
k=1 of {an}∞n=m that converges to

q. Since ε > 0, there exists some natural number M such that for all k ≥M ,
we have

|ank − q| <
ε

2
(2)
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Also, for all k ≥ N +M , we get nk ≥ k ≥ N +M and

|ak − q| = |ak − ank + ank − q|
≤ |ank − ak|+ |ank − q|

<
ε

2
+ ε2 (by (1) and (2))

= ε.

It follows that the sequence {an}∞n=m converges to q. If S is a finite set, then
some ak is repeated infinite number of times and hence some subsequences of
{an}∞n=m converges to ak. By the preceding argument {an}∞n=m also converges
to ak. This completes the proof of this theorem.

Theorem 8.2.2 Let {f(n)}∞n=m be a sequence where f is a differentiable
function defined for all real numbers x ≥ m. Then the sequence {f(n)}∞n=m

is

(a) increasing if f ′(x) > 0 for all x > m;

(b) decreasing if f ′(x) < 0 for all x > m;

(c) nondecreasing if f ′(x) ≥ 0 for all x > m;

(d) nonincreasing if f ′(x) ≤ 0 for all x > m.

Proof. Suppose that m ≤ a < b. Then by the Mean Value Theorem for
derivatives, there exists some c such that a < c < b and

f(b)− f(a)

b− a
= f ′(c),

f(b) = f(a) + f ′(c)(b− a).

The theorem follows from the above equation by considering the value of
f ′(c). In particular, for all natural numbers n ≥ m,

f(n+ 1) = f(n) + f ′(c),

for some c such that n < c < n+ 1.

Part (a). If f ′(c) > 0, then f(n+ 1) > f(n) for all n ≥ m.
Part (b). If f ′(c) < 0, then f(n+ 1) < f(n) for all n ≥ m.
Part (c). If f ′(c) ≥ 0, then f(n+ 1) ≥ f(n) for all n ≥ m.
Part (d). If f ′(c) ≤ 0, then f(n+ 1) ≤ f(n) for all n ≤ m.

This completes the proof of this theorem.
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8.3 Infinite Series

Definition 8.3.1 Let {tn}∞n=1 be a given sequence. Let

s1 = t1, s2 = t1 + t2, s3 = t1 + t2 + t3, · · · , sn =
n∑
k=1

tk,

for all natural number n. If the sequence {sn}∞n=1 converges to a finite number
L, then we write

L = t1 + t2 + t3 + · · · =
∞∑
k=1

tk.

We call
n∑
k=1

tk an infinite series and write

∞∑
k=1

tk = lim
n→∞

n∑
k=1

tk = L.

We say that L is the sum of the series and the series converges to L. If a
series does not converge to a finite number, we say that it diverges. The
sequence {sn}∞n=1 is called the sequence of the nth partial sums of the series.

Theorem 8.3.1 Suppose that a and r are real numbers and a 6= 0. Then
the geometric series

a+ ar + ar2 + · · · =
∞∑
k=0

ark =
a

1− r
,

if |r| < 1. The geometric series diverges if |r| ≥ 1.

Proof. For each natural number n, let

sn = a+ ar + · · ·+ arn−1.

On multiplying both sides by r, we get

rsn = ar + ar2 + · · ·+ arn−1 + arn

sn − rsn = a− arn

(1− r)sn = a(1− rn)

sn =
a

1− r
−
(

a

1− r

)
rn.
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If |r| < 1, then

lim
n→∞

sn =
a

1− r
− a

1− r
lim
n→∞

rn =
a

1− r
.

If |r| > 1, then lim
n→∞

rn is not finite and so the sequence {sn}∞n=1 of nth partial

sums diverges.
If r = 1, then sn = na and lim

n→∞
na is not a finite number.

This completes the proof of the theorem.

Theorem 8.3.2 (Divergence Test) If the series
∞∑
k=1

tk converges, then lim
n→∞

tn =

0. If lim
n→∞

tn 6= 0, then the series diverges.

Proof. Suppose that the series converges to L. Then

lim
n→∞

an = lim
n→∞

(
n∑
k=1

ak −
n−1∑
k=1

ak

)

= lim
n→∞

n∑
k=1

ak − lim
n→∞

n−1∑
k=1

ak

= L− L
= 0.

The rest of the theorem follows from the preceding argument. This completes
the proof of this theorem.

Theorem 8.3.3 (The Integral Test) Let f be a function that is defined,
continuous and decreasing on [1,∞) such that f(x) > 0 for all x ≥ 1. Then

∞∑
n=1

f(n) and

∫ ∞
1

f(x)dx

either both converge or both diverge.

Proof. Suppose that f is decreasing and continuous on [1,∞), and f(x) > 0
for all x ≥ 1. Then for all natural numbers n, we get,

n+1∑
k=2

f(k) ≤
∫ n+1

1

f(x)dx ≤
n∑
k=1

f(k)
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graph

It follows that,
∞∑
k=2

f(k) ≤
∫ ∞

1

f(x)dx ≤
∞∑
k=1

f(k).

Since f(1) is a finite number, it follows that

∞∑
k=1

f(k) and

∫ ∞
1

f(x)dx

either both converge or both diverge. This completes the proof of the theo-
rem.

Theorem 8.3.4 Suppose that p > 0. Then the p-series

∞∑
n=1

1

np

converges if p > 1 and diverges if 0 < p ≤ 1. In particular, the harmonic
series

∑∞
n=1

1
n

diverges.

Proof. Suppose that p > 0. Then∫ ∞
1

1

xp
dx =

∫ ∞
1

x−pdx

=
x1−p

1− p

∣∣∣∣∞
1

=
1

1− p

(
lim
x→∞

x1−p − 1
)
.

It follows that the integral converges if p > 1 and diverges if p < 1. If p = 1,
then ∫ ∞

1

1

x
dx = lnx

∣∣∣∣∞
1

=∞.

Hence, the p-series converges if p > 1 and diverges if 0 < p ≤ 1. This
completes the proof of this theorem.
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Exercises 8.1

1. Define the statement that the sequence {an}∞n=1 converges to L.

2. Suppose the sequence {an}∞n=1 converges to L and the sequences {bn}∞n=1

converges to M . Then prove that

(a) {can}∞n=1 converges to cL, where c is constant.

(b) {an + bn}∞n=1 converges to L+M .

(c) {an − bn}∞n=1 converges to L−M .

(d) {anbn}∞n=1 converges to LM .

(e)

{
an
bn

}∞
n=1

converges to
L

M
, if M 6= 0.

3. Suppose that 0 < an ≤ an+1 < M for each natural number n. Then
prove that

(a) {an}∞n=1 converges.

(b) {−an}∞n=1 converges.

(c)
{
akn
}∞
n=1

converges for each natural number k.

4. Prove that

{
xn

n!

}∞
n=1

converges to 0 for every real number x.

5. Prove that

{
n!

nn

}∞
n=1

converges to 0.

6. Prove that for each natural number n ≥ 2,

(a)
1

2
+

1

3
+ · · ·+ 1

n
< ln(n) < 1 +

1

2
+ · · ·+ 1

n− 1
.

(b)
1

2p
+

1

3p
+ · · · + 1

np
<
∫ n

1

1

tp
dt < 1 +

1

2p
+ · · · + 1

(n− 1)p
for each

p > 0.

(c)

{
n∑
k=1

1

kp

}∞
n=1

converges if and only if

{∫ ∞
1

1

tp
dt

}
converges. De-

termine the numbers p for which

{
n∑
n=1

1

kp

}∞
n=1

converges.
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7. Prove that

{
n∑
k=0

rk

}∞
n=1

converges if and only if |r| < 1.

8. Prove that

{
n∑
k=1

1

k

}∞
n=1

diverges.

9. Prove that

{
n∑
k=2

1

k ln k

}∞
n=2

diverges.

10. Prove that for each natural number m ≥ 2,

(a)

∫ m

1

(ln t)dt < ln(m!) <

∫ m+1

1

(ln t)dt

(b) m(ln(m)− 1) < ln(m!) < (m+ 1)(ln(m+ 1)− 1).

(c)
mm

em−1
< m! <

(m+ 1)m+1

em
.

(d) lim
m→+∞

(m!)1/m = +∞.

(e) lim
m→+∞

(m!)1/m

m
=

1

e

11. Prove that {(−1)n}∞n=1 does not converge.

12. Prove that

{
sin(1/n)

(1/n)

}∞
n=1

converges to 1.

13. Prove that

{
sinn

n

}∞
n=1

converges to zero.

8.4 Series with Positive Terms

Theorem 8.4.1 (Algebraic Properties) Suppose that
∑∞

k=1 ak and
∑∞

k=1 bk
are convergent series and c > 0. Then

(i)
∞∑
k=1

(ak + bk) =
∞∑
k=1

ak +
∞∑
k=1

bk



328 CHAPTER 8. INFINITE SERIES

(ii)
∞∑
k=1

(ak − bk) =
∞∑
k=1

ak −
∞∑
k=1

bk

(iii)
∞∑
k=1

c ak = c
∞∑
k=1

ak

(iv) If m is any natural number, then the series

∞∑
k=1

ck and
∞∑
k=m

ck

either both converge or both diverge.

Proof.

Part (i)

∞∑
k=1

(ak ± bk) = lim
n→∞

(
n∑
k=1

(ak ± bk)

)

=

(
lim
n→∞

n∑
k=1

ak

)
±

(
lim
n→∞

n∑
k=1

bk

)

=
∞∑
k=1

ak ±
∞∑
k=1

bk.

Part (ii) This part also follows from the preceding argument.

Part(iii) We see that

∞∑
k=1

c ak = lim
n→∞

(
n∑
k=1

c ak

)

= c

(
lim
n→∞

n∑
k=1

ak

)

= c
∞∑
k=1

ak.
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Part (iv) We observe that

∞∑
k=1

ak =
m−1∑
k=1

ak +
∞∑
k=1

ak.

Therefore,

∞∑
k=1

ak = lim
n→∞

n∑
k=1

ak

=
m−1∑
k=1

ak + lim
n→∞

n∑
k=m

ak.

It follows that the series

∞∑
k=1

ak and
∞∑
k=m

ak

either both converge or both diverge. This completes the proof of this theo-
rem.

Theorem 8.4.2 (Comparison Test) Suppose that 0 < an ≤ bn for all natural
numbers n ≥ 1.

(a) If there exists some M such that
∑n

k=1 ak ≤ M , for all natural numbers
n, then

∑∞
k=1 ak converges. If there exists no such M , then the series

diverges.

(b) If
∑∞

k=1 bk converges, then
∑∞

k=1 ak converges.

(c) If
∑∞

k=1 ak diverges, then
∑∞

k=1 bk diverges.

(d) If cn > 0 for all natural numbers n, and

lim
n→∞

cn
an

= L, 0 < L <∞,

then the series
∑∞

k=1 ak and
∑∞

k=1 ck either both converge or both diverge.
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Proof. Let An =
n∑
k=1

ak, Bn =
n∑
k=1

bk, 0 < an ≤ bn for all natural numbers

n. The sequences {An}∞n=1 and {Bn}∞n=1 are strictly increasing sequence. Let
A represent the least upper bound of {An}∞n=1 and let B represent the least
upper bound of {Bn}∞n=1

Part (a) If An ≤ M for all natural numbers, then {An}∞n=1 is a bounded
and strictly increasing sequence. Then A is a finite number and {An}∞n=1

converges to A and

A =
∞∑
k=1

ak.

Part (b) If
∞∑
k=1

bk converges, then
∞∑
k=1

bk = B and An ≤ Bn ≤ B for all

natural numbers n. By Part (a),
∞∑
k=1

ak converges to A.

Part (c) If
∞∑
k=1

ak diverges, then the sequence {An}∞n=1 diverges. Since {An}∞n=1

is strictly increasing and divergent, for every M there exists some m such
that

M < An ≤ Bn

for all natural numbers n ≥ m. It follows that {Bn}∞n=1 diverges.

Part (d) Suppose that 0 < an and 0 < cn, 0 < L <∞, ε =
L

2
and

lim
n→∞

cn
an

= L.

Then there exists some natural number m such that∣∣∣∣ cnan − L
∣∣∣∣ < 1

2
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for all natural numbers n ≥ m. Hence, for all n ≥ m, we have

−L
2
<
cn
an
− L < L

2
,

L

2
<
cn
an

<
3

2
L(

L

2

)
an ≤ cn ≤

(
3

2
L

)
an.(

L

2

) n∑
k=m

ak ≤
∑
k=m

mck ≤
(

3

2
L

) n∑
k=m

ak

If

{
n∑
k=1

ak

}∞
n=1

diverges, then

{
L

2

m∑
k=m

ak

}
diverges and, hence

{
n∑

k=m

ck

}∞
n=m

and

{
n∑
k=1

ck

}∞
k=1

both diverge.

If

{
n∑
k=1

ak

}∞
k=1

converges, then

{(
3

2
L

) n∑
k=m

ak

}∞
n=m

converges and, hence,{∑
k=m

ck

}∞
n=m

and

{
n∑
k=1

ck

}∞
n=1

both converge.

This completes the Proof of Theorem 8.4.2.

Theorem 8.4.3 (Ratio Test) Suppose that 0 < an for every natural number
n and

lim
n→∞

an+1

an
= r.

Then the series
∑∞

k=1 ak

(a) converges if r < 1;

(b) diverges if r > 1;

(c) may converge or diverge if r = 1; the test fails.

Proof. Suppose that 0 < an for every natural number n and

lim
n→∞

an+1

an
= r.
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Let ε > 0 be given. Then there exists some natural number M such that∣∣∣∣an+1

an
− r
∣∣∣∣ < ε, −ε+ r <

an+1

an
< r + ε

(r − ε)an < an+1 < (r + ε)an (1)

for all natural numbers n ≥M .
Part (a) Suppose that 0 ≤ r < 1 and ε = (1 − r)/2. Then for each natural
number k, we have

am+k < (r + ε)kam =

(
1 + r

2

)k
am . . . (2)

Hence, by (2), we get

∞∑
n=1

an =
m−1∑
n=1

an +
∞∑
k=0

am+k

<
m−1∑
n=1

an +
∞∑
k=0

(
1 + r

2

)k
am

=
m−1∑
n=1

an +
am

1−
(

1+r
2

)
=

m−1∑
n=1

an +
2am
1− r

<∞.

It follows that the series
∞∑
n=1

an converges.

Part (b) Suppose that 1 < r, ε = (r − 1)/2. Then by (1) we get

an <
3r − 1

2
an < an+1

for all n ≥ m. It follows that

0 < am ≤ lim
k→∞

am+k = lim
n→∞

an.
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By the Divergence test, the series
∞∑
n=1

an diverges.

Part (c) For both series
∞∑
n=1

1

n
and

∞∑
n=1

1

n2
,

lim
n→∞

an+1

an
= 1.

But, by the p-series test,
∞∑
n=1

1

n
diverges and

∞∑
n=1

1

n2
converges. Thus, the

ratio test fails to test the convergence or divergence of these series when
r = 1.

This completes the proof of Theorem 8.4.3.

Theorem 8.4.4 (Root Test) Suppose that 0 < an for each natural number
n and

lim
n→∞

(an)1/n = r.

Then the series
∑∞

k=1 ak

(a) converges if r < 1;

(b) diverges if r > 1;

(c) may converge or diverge if r = 1; the test fails.

Proof. Suppose that 0 < an for each natural number n and

lim
n→∞

(an)1/n = r.

Let ε > 0 be given. Then there exists some natural number m such that∣∣(an)1/n − r
∣∣ < ε

r − ε < (an)1/n < r + ε . . . (3)

for all natural numbers n ≥ m.

Part (a) Suppose r < 1 and ε =
1 + r

2
. Then, by (3), for each natural number

n ≥ m, we have

(an)1/n <
1 + r

2
and an <

(
1− r

2

)n
.
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it follows that

∞∑
n=1

ak =
m−1∑
n=1

an +
∞∑
n=m

an

<
m−1∑
n=1

an +
∞∑
n=m

(
1 + r

2

)n
=

m−1∑
n=1

an +

(
1 + r

2

)m(
1

1−
(

1+r
2

))

=
m−1∑
n=1

an +

(
1 + r

2

)m(
2

1− r

)
<∞.

Therefore,
∞∑
n=1

ak converges.

Part (b) Suppose r > 1 and ε = (r − 1)/2. Then, by (3), for each natural
number n ≥ m, we have

1 <
1 + r

2
= r + ε < (an)1/n

1 <

(
1 + r

2

)n
< an.

It follows that lim
n→∞

an 6= 0 and, by the Divergence test, the series
∞∑
n=1

an

diverges.

Part (c) For each of the series
∞∑
n=1

1

n
and

∞∑
n=1

1

n2
we have r = 1, where

r = lim
n→∞

(an)1/n.

But the series
∞∑
n=1

1

n
diverges and the series

∞∑
n=1

1

n2
converges by the p-series

test. Therefore, the test fails to determine the convergence or divergence for
these series when r = 1. This completes the proof of Theorem 8.4.4.
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Exercises 8.2

1. Define what is meant by
∞∑
k=1

ak.

2. Define what is meant by the sequence of nth partial sums of the series
∞∑
k=1

ak.

3. Suppose that a 6= 0. Prove that
∞∑
k=0

ark converges to
a

1− r
if |r| < 1.

4. Prove that the series
∞∑
k=1

1

k(k + 2)
converges to

3

4
.

5. Prove that
∞∑
k=1

1

kp
converges to

1

p− 1
if p > 1 and diverges otherwise.

6. Prove that

{
n

n+ 1

}∞
n=1

is an increasing sequence and the series
∞∑
n=1

ln

(
n

n+ 1

)
diverges.

7. Prove that
∞∑
k=0

(−1)kxk converges to
1

1 + x
if |x| < 1.

8. Prove that
∞∑
k=0

x2k converges to
1

1− x2
if |x| < 1.

9. Prove that
∞∑
k=0

(−1)kx2k converges to
1

1 + x2
if |x| < 1.

10. Prove that if
∞∑
k=0

ak converges, then lim
k→∞

ak = 0. Is the converse true?

Explain your answer.

11. Suppose that if
∞∑
k=0

ak converges to L and
∞∑
k=0

bk converges to M . Prove

that
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(a)
∞∑
k=0

(c ak) converges to cL for each constant c.

(b)
∞∑
k=0

(ak + bk) converges to L+M .

(c)
∞∑
k=0

(ak − bk) converges to L−M .

(d)
∞∑
k=0

akbk may or may not converge to LM .

12. Prove that
∞∑
k=1

1

kp
converges if and only if

∫ ∞
1

1

tp
dt converges. Deter-

mine the values of p for which the series converges.

13. Suppose that f(x) is continuous and decreasing on the interval [a,+∞).

Let ak = f(k) for each natural number k. Then the series
∞∑
k=1

ak con-

verges if and only if

∫ ∞
a

f(x)dx converges.

14. Suppose that 0 ≤ ak ≤ ak+1 for each natural number k, and sn =
n∑
k=1

ak.

Prove that if sn ≤M for some M and all natural numbers n, then
∞∑
k=1

ak

converges.

15. Suppose that 0 ≤ ak ≤ bk for each natural number k. Prove that

(a) if
∞∑
k=1

bk converges, then
∞∑
k=1

ak converges.

(b) if
∞∑
k=1

ak diverges, then
∞∑
k=1

bk diverges.

(c) if lim
k→∞

ak 6= 0, then
∞∑
k=1

ak diverges.
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(d) if lim
k→∞

ak = 0, then
∞∑
k=1

ak may or may not converge.

16. Suppose that 0 < ak for each natural number k. Prove that if lim
k→∞

(ak+1/ak) <

1, then
∞∑
k=1

ak converges.

17. Suppose that 0 < ak for each natural number k. Prove that if lim
k→∞

(ak+1/ak) >

1, then
∞∑
k=1

ak diverges.

18. Suppose that 0 < ak for each natural number k. Prove that if lim
k→∞

(ak+1/ak) =

1, then
∞∑
k=1

ak may or may not converge.

19. Suppose that 0 < ak and 0 < bk for each natural number k. Prove that

if 0 < lim
k→∞

(ak/bk) < ∞, then
∞∑
k=1

ak converges if and only if
∞∑
k=1

bk

converges.

20. Suppose that 0 < ak for each natural number k. Prove that if lim
k→∞

(ak)
1/k <

1, then
∞∑
k=1

ak converges.

21. Suppose that 0 < ak for each natural number k. Prove that if lim
k→∞

(ak)
1/k >

1, then
∞∑
k=1

ak diverges.

22. Suppose that 0 < ak for each natural number k. Prove that if lim
k→∞

(ak)
1/k =

1, then
∞∑
k=1

ak may or may not converge.

23. A series
∞∑
k=1

ak is said to converge absolutely if
∞∑
k=1

|ak| converges. Sup-

pose that lim
k→∞
|ak+1/ak| = p. Prove that
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(a)
∞∑
k=1

ak converges absolutely if p < 1.

(b)
∞∑
k=1

ak does not converge absolutely if p > 1.

(c)
∞∑
k=1

ak may or may not converge absolutely if p = 1.

24. A series
∞∑
k=1

ak is said to converge absolutely if
∞∑
k=1

|ak| converges. Sup-

pose that lim
k→∞

(|ak|)1/k = p. Prove that

(a)
∞∑
k=1

ak converges absolutely if p < 1.

(b)
∞∑
k=1

ak does not converge absolutely if p > 1.

(c)
∞∑
k=1

ak may or may not converge absolutely if p = 1.

25. Prove that if
∞∑
k=1

ak converges absolutely, then it converges. Is the

converse true? Justify your answer.

26. Suppose that ak 6= 0, bk 6= 0 for any natural number k and lim
k→∞

∣∣∣∣akbk
∣∣∣∣ = p.

Prove that if 0 < p < 1, then the series
∞∑
k=1

ak converges absolutely if

and only if
∞∑
k=1

bk converges absolutely.

27. A series
∞∑
k=1

ak is said to converge conditionally if
∞∑
k=1

ak converges but
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∞∑
k=1

|ak| diverges. Determine whether the series
∞∑
n=1

(−1)n+1

n
converges

conditionally or absolutely.

28. Suppose that 0 < ak and |ak+1| < |ak| for every natural number k. Prove

that if lim
k→+∞

ak = 0, then the series
∞∑
k=1

(−1)k+1ak and
∞∑
k=1

(−1)kak are

both convergent. Furthermore, show that if s denotes the sum of the
series, then s is between the nth partial sum sn and the (n+ 1)st partial
sum sn+1 for each natural number n.

29. Determine whether the series
∞∑
n=1

(−1)n
n

3n
converges absolutely or condi-

tionally.

30. Determine whether the series
∞∑
n=1

(−1)n
(2n)!

n10
converges absolutely or con-

ditionally.

In problems 31–62, test the given series for convergence, conditional conver-
gence or absolute convergence.

31.
∞∑
n=1

(−1)n
n!

5n
32.

∞∑
n=1

(−1)n+1 5n

n!

33.
∞∑
n=1

(−1)nn

(
4

5

)n
34.

∞∑
n=1

(−1)n+1n2

(
4

5

)n

35.
∞∑
n=1

(−1)n

n3/2
36.

∞∑
n=1

(−1)n+1

n1/2

37.
∞∑
n=1

(−1)n

np
, 0 < p < 1 38.

∞∑
n=1

(−1)n+1

np
, 1 < p

39.
∞∑
n=1

(−1)n
(n+ 1)

n2 + 2
40.

∞∑
n=1

(−1)n+1 (n+ 1)2

3n
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41.
∞∑
n=1

(−1)n+1 (n+ 2)2

(n+ 1)3
42.

∞∑
n=1

(−1)n−1

(
3
2

)n
n2

43.
∞∑
n=1

(−1)n(4/3)n

n4
44.

∞∑
n=1

(−4)n

(n!)n

45.
∞∑
n=1

(−3)n
n

(2n)!
46.

∞∑
n=1

(−1)n
(n+ 1)!

1 · 3 · 5 · · · (2n+ 1)

47.
∞∑
n=1

(−1)n
(n!)22n

(2n)!
48.

∞∑
n=1

(−1)n+1 (n− 1)

n3/2

49.
∞∑
n=1

(−1)n(n!)2 4n

(2n)!
50.

∞∑
n=1

(−1)n
2 · 4 · · · (2n+ 2)

1 · 4 · 7 · · · (3n+ 1)

51.
∞∑
n=1

(−1)n−1 5n+1

24n
52.

∞∑
n=1

(−1)n+1 (n+ 1)

(n+ 3)

53.
∞∑
n=1

(−1)n+1 (n+ 2)

n5/4
54.

∞∑
n=1

(−1)n
(n+ 2)

n7/4

55.
∞∑
n=1

(−1)n
(3n2 + 2n− 1)

2n3
56.

∞∑
n=2

(−1)n

n(lnn)

57.
∞∑
n=2

(−1)n
(lnn)

n
58.

∞∑
n=1

(−1)n+1 (lnn)

n2

59.
∞∑
n=1

(−1)n
n!

np
, 0 < p < 1 60.

∞∑
n=1

(−1)n
np

n!
, 0 < p < 1

61.
∞∑
n=1

(−1)n
n!

np
, 1 < p 62.

∞∑
n=1

(−1)n
np

n!
, 1 < p
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63. Suppose that 0 < ak for each natural number k and
∞∑
k=1

ak converges.

Prove that
∞∑
k=1

apk converges for every p > 1.

64. Suppose that 0 < ak for each natural number k and
∞∑
k=1

ak diverges.

Prove that
∞∑
k=1

apk, for 0 < p < 1.

65. Suppose that 0 < r < 1 and |ak+1/ak| < r for all k ≥ N . Prove that
∞∑
k=1

ak converges absolutely.

66. Prove that
∞∑
k=1

(−1)n
an

3 + bn
converges absolutely if 0 < a < b.

8.5 Alternating Series

Definition 8.5.1 Suppose that for each natural number n, bn is positive or
negative. Then the series

∑∞
k=1 bk is said to converge

(a) absolutely if the series
∑∞

k=1 |bk| converges;

(b) conditionally if the series
∑∞

k=1 bk converges but
∑∞

k=1 |bk| diverges.

Theorem 8.5.1 If a series converges absolutely, then it converges.

Proof. Suppose that
∞∑
k=1

|bk| converges. For each natural number k, let

ak = bk + |bk| and ck = 2|bk|. Then 0 ≤ ak ≤ ck for each k. Since

∞∑
k=1

ck =
∞∑
k=1

2|bk| = 2
∞∑
k=1

|bk|,
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the series
∞∑
k=1

ck converges. by the comparison test
∞∑
k=0

ak also converges. It

follows that

∞∑
k=1

bk =
∞∑
k=1

(ak − |bk|)

=
∞∑
k=1

ak −
∞∑
k=1

|bk|

and the series
∞∑
k=1

bk converges. This completes the proof of the theorem.

Definition 8.5.2 Suppose that for each natural number n, an > 0. Then an
alternating series is a series that has one of the following two forms:

(a) a1 − a2 + a3 − · · ·+ (−1)n+1an + · · · =
n∑
k=1

(−1)k+1ak

(b) −a1 + a2 − a3 + · · ·+ (−1)nan + · · · =
∞∑
k=1

(−1)kak.

Theorem 8.5.2 Suppose that 0 < an+1 < an for all natural numbers m, and
lim
n→∞

an = 0. Then

(a)
∞∑
n=1

(−1)nan and
∞∑
n=1

(−1)n+1an both converge.

(b)

∣∣∣∣∣
∞∑
k=1

(−1)k+1an −
n∑
k=1

(−1)k+1an

∣∣∣∣∣ < an+1, for all n;

(c)

∣∣∣∣∣
∞∑
k=1

(−1)kak −
∞∑
k=1

(−1)kak

∣∣∣∣∣ < an+1, or all n.

Proof.
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Part (a) For each natural number n, let sn =
n∑
k=1

(−1)k+1ak. Then,

s2n+2 − s2n =
2n+2∑
k=1

(−1)k+1ak −
2n∑
k=1

(−1)k+1ak

= (−1)2n+3a2n+2 + (−1)2n+2a2n+1

= a2n+1 − a2n+2 > 0.

Therefore, s2n+2 > s2n and {s2n}∞n=1 is an increasing sequence. Similarly,

s2n+3 − s2n+1 = (−1)2n+4a2n+3 − (−1)2n+2a2n+1 = a2n+3 − a2n+1 < 0.

Therefore, s2n+3 < s2n+1 and {s2n+1}∞n=0 is a decreasing sequence. Further-
more,

s2n = a1 − a2 + a3 − a4 + · · ·+ (−1)2n+1a2n

= a1 − (a2 − a3)− (a4 − a5)− · · · − (a2n−2 − a2n−1)− a2n < a1.

Thus, {s2n}∞n=1 is an increasing sequence which is bounded above by a1.
Therefore, {s2n}∞n=1 converges to some number s ≤ a1. Then

lim
n→∞

s2n+1 = lim
n→∞

s2n + lim
n→∞

a2n+1

= lim
n→∞

s2n

= s.

It follows that
lim
n→∞

sn = s

and the series
∞∑
n=1

(−1)n+1ak converges to s and the series
∞∑
n=1

(−1)nak con-

verges to −s.
Part (b) In the proof of Part (a) we showed that

s2n < s < s2n+1 < s2n−1 . . . (1)

for each natural number n. It follows that

0 < s− s2n < s2n+1 − s2n = a2n+1
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and ∣∣∣∣∣
∞∑
k=1

(−1)k+1ak −
2n∑
k=1

(−1)k+1ak

∣∣∣∣∣ < a2n+1.

Similarly,

s2n − s2n−1 < s− s2n−1

s2n−1 − s2n > s2n−1 − s
s− s2n−1 < s2n−1 − s2n = a2n∣∣∣∣∣

∞∑
k=1

(−1)k+1ak −
2n−1∑
k=1

(−1)k+1ak

∣∣∣∣∣ < a2n.

It follows that for all natural numbers n,∣∣∣∣∣
∞∑
k=1

(−1)k+1ak −
n∑
k=1

(−1)k+1ak

∣∣∣∣∣ < an+1.

Part (c)

∣∣∣∣∣
∞∑
k=1

(−1)kak −
n∑
k=1

(−1)kak

∣∣∣∣∣
=

∣∣∣∣∣(−1)

{
∞∑
k=1

(−1)k+1ak −
n∑
k=1

(−1)k+1ak

}∣∣∣∣∣
=

∣∣∣∣∣
∞∑
k=1

(−1)k+1ak −
n∑
k=1

(−1)k+1ak

∣∣∣∣∣ < a2n+1.

This concludes the proof of this theorem.

Theorem 8.5.3 Consider a series
∑∞

k=1 ak. Let

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L , lim
n→∞

|an|1/n = M

(a) If L < 1, then the series
∑∞

k=1 ak converges absolutely.

(b) If L > 1, then the series
∑∞

k=1 ak does not converge absolutely.

(c) If M < 1, then the series
∑∞

k=1 ak converges absolutely.
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(d) If M > 1, then the series
∑∞

k=1 ak does not converge absolutely.

(e) If L = 1 or M = 1, then the series
∑∞

k=1 ak may or may not converge
absolutely.

Proof. Suppose that for a series
∞∑
k=1

ak,

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L and lim
n→∞

|an|1/n = M.

Part (a) If L < 1, then the series
∞∑
k=1

|ak| converges to the ratio test, since

lim
n→∞

|an+1|
|an|

= lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L < 1.

Hence, the series
∞∑
k=1

ak converges absolutely.

Part (b) As in Part (a), the series
∞∑
k=1

|ak| diverges by the ratio test if L > 1,

since

lim
n→∞

|an+1|
|an|

= lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L > 1.

Part (c) If M < 1, then the series
∞∑
k=1

|ak| converges by the root test, since

lim
n→∞

|ak|1/n = M < 1.

Part (d) If M > 1, then the series
∞∑
k=1

|ak| diverges by the root test as in

Part (c).

Part (e) For the series
∞∑
k=1

1

k
and

∞∑
k=1

1

k2
, L = M = 1, but

∞∑
k=1

1

k
diverges

and
∞∑
k=1

1

k2
converges by the p-series test. Thus, L = 1 and M = 1 fail to

determine convergence or divergence.



346 CHAPTER 8. INFINITE SERIES

This completes the proof of Theorem 8.5.3.

Exercises 8.3 Determine the region of convergence of the following series.

71.
∞∑
n=1

(−1)nxn

2n
72.

∞∑
n=1

(−1)n(x+ 2)n

3nn2

73.
∞∑
n=1

(−1)n(x− 1)n

n!
74.

∞∑
n=1

(−1)nn!(x− 1)n

5n

75.
∞∑
n=0

(−2)nxn 76.
∞∑
n=1

(x+ 2)n

2nn2

77.
∞∑
n=1

(−1)n
(x+ 1)n

3nn3
78.

∞∑
n=1

(−1)n(x− 3)n

n3/2

79.
∞∑
n=1

(2x)n

n!
80.

∞∑
n=1

(−1)nxn

(2n)!

81.
∞∑
n=1

(n+ 1)!(x− 1)n

4n
82.

∞∑
n=1

(−1)n(2n)!xn

n!

83.
∞∑
n=1

n2(x+ 1)n 84.
∞∑
n=1

(−1)nn!(x− 1)n

1 · 3 · · · 5 · · · (2n+ 1)

85.
∞∑
n=1

(−1)n(n!)2(x− 1)n

3n(2n)!
86.

∞∑
n=1

(−1)n3nxn

23n

87.
∞∑
n=1

(−1)n(x+ 1)n

(n+ 1) ln(n+ 1)
88.

∞∑
n=1

ln(n+ 1)2n(x+ 1)n

n+ 2

89.
∞∑
n=1

(−1)n(lnn)3nxn

4nn2
90.

∞∑
n=1

(−1)n1 · 3 · 5 · · · (2n+ 1)

2 · 4 · 6 · · · (2n+ 2)
xn
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8.6 Power Series

Definition 8.6.1 If a0, a1, a2, . . . is a sequence of real numbers, then the
series

∑∞
k=1 akx

k is called a power series in x. A positive number r is called
the radius of convergence and the interval (−r, r) is called the interval of
convergence of the power series if the power series converges absolutely for
all x in (−r, r) and diverges for all x such that |x| > r. The end point x = r is
included in the interval of convergence if

∑∞
k=1 akr

k converges. The end point
x = −r is included in the interval of convergence if the series

∑∞
k=1(−1)kakr

k

converges. If the power series converges only for x = 0, then the radius of
convergence is defined to be zero. If the power series converges absolutely
for all real x, then the radius of convergence is defined to be ∞.

Theorem 8.6.1 If the series
∞∑
n=1

cnx
n converges for x = r 6= 0, then the

series
∞∑
n=0

cnx
n converges absolutely for all numbers x such that |x| < |r|.

Proof. Suppose that
∞∑
n=0

cnr
n converges. Then, by the Divergence Test,

lim
n→∞

cnr
n = 0.

For ε = 1, there exists some natural number m such that for all n ≥ m,

|cnrn| < ε = 1.

Let
M = max{|cnrn|+ 1 : 1 ≤ n ≤ m}.

Then, for each x such that |x| < |r|, we get |x/r| < 1 and

∞∑
n=0

|cnxn| =
∞∑
n=0

|cnrn| ·
∣∣∣x
r

∣∣∣n
≤

∞∑
n=0

M
∣∣∣x
r

∣∣∣n
=

M

1−
∣∣x
r

∣∣ <∞.
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By the comparison test the series
∞∑
n=0

|cnxn| converges for x such that |x| <

|r|. This completes the proof of Theorem 8.6.1.

Theorem 8.6.2 If the series
∞∑
n=0

cn(x − a)n converges for some x − a =

r 6= 0, then the series
∞∑
n=0

cn(x− a)n converges absolutely for all x such that

|x− a| < |r|.

Proof. Let x−a = u. Suppose that
∞∑
n=0

cnu
n converges for some u = r. Then

by Theorem 8.6.1, the series
∞∑
n=0

cnu
n converges absolutely for all u such that

|u| < |r|. It follows that the series
∞∑
n=0

cn(x− a)n converges absolutely for all

x such that |x− a| < |r|. This completes the proof of the theorem.

Theorem 8.6.3 Let
∞∑
n=0

cnx
n be any power series. Then exactly one of the

following three cases is true.

(i) The series converges only for x = 0.

(ii) The series converges for all x.

(iii) There exists a number R such that the series converges for all x with
|x| < R and diverges for all x with |x| > R.

Proof. Suppose that cases (i) and (ii) are false. Then there exist two

nonzero numbers p and q such that
∞∑
n=0

cnp
n converges and

∞∑
n=0

cnq
n diverges.

By Theorem 8.6.1, the series converges absolutely for all x such that |x| < |p|.
Let

A = {p :
∞∑
n=0

cnp
n converges}.
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The set A is bounded from above by q. Hence A has a least upper bound, say
R. Clearly |p| ≤ R < q and hence R is a positive real number. Furthermore,
∞∑
n=0

cnx
n converges for all x such that |x| < R and diverges for all x such that

|x| > R. We define R to be 0 for case (i) and R to be ∞ for case (ii). This
completes the proof of Theorem 8.6.3.

Theorem 8.6.4 Let
∞∑
n=0

cn(x − a)n be any power series. Then exactly one

of the following three cases is true:

(i) The series converges only for x = a and the radius of convergence is 0.

(ii) The series converges for all x and the radius of convergence is ∞.

(iii) There exists a number R such that the series converges for all x such
that |x− a| < R and diverges for all x such that |x− a| > R.

Proof. Let u = x − a and use Theorem 8.6.3 on the series
∞∑
n=0

cnu
n. The

details of the proof are left as an exercise.

Theorem 8.6.5 If R > 0 and the series
∞∑
n=0

cnr
n converges for |x| < R, then

the series
∞∑
n=1

ncnx
n−1, obtained by term-by-term differentiation of

∞∑
n=0

cnx
n,

converges absolutely for |x| < R.

Proof. For each x such that |x| < R, choose a number r such that |x| < r <

R. Then
∞∑
n=0

cnx
n converges, lim

n→∞
cnr

n = 0 and hence {cnrn}∞n=0 is bounded.

There exists some M such that |cnrn| ≤M for each natural number n. Then

∞∑
n=1

|ncnxn−1| =
∞∑
n=1

n|cnrn| ·
1

r
·
∣∣∣x
r

∣∣∣n−1

≤ M

r

∞∑
n=1

n
∣∣∣x
r

∣∣∣n−1

.
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The series
∞∑
n=1

n
∣∣∣x
r

∣∣∣n−1

converges by the ratio test, since
∣∣∣x
r

∣∣∣ < 1. It follows

that
∞∑
n=1

ncnx
n−1 converges absolutely for all x such that |x| < R. This

completes the proof of this theorem.

Theorem 8.6.6 If R > 0 and the series
∞∑
n=0

cn(x − a)n converges for all x

such that |x−a| < R, then the series
∞∑
n=0

cn(x−a)n may be differentiated with

respect to x any number of times and each of the differential series converges
for all x such that |x− a| < R.

Proof. Let u = x−a. Then
∞∑
n=0

cnu
n converges for all u such that |u| < R. By

Theorem 8.6.5, the series
∞∑
n=1

ncnu
n−1 converges for all u such that |u| < R.

This term-by-term differentiation process may be repeated any number of
times without changing the radius of convergence. This completes the proof
of this theorem.

Theorem 8.6.7 Suppose that R > 0 and f(x) =
∑∞

n=0 cnx
n and R is radius

of convergence of the series
∑∞

n=0 cnx
n. Then f(x) is continuous for all x

such that |x| < R.

Proof. For each number c such that −R < c < R, we have

∣∣∣∣f(x)− f(c)

x− c

∣∣∣∣ =

∣∣∣∣∣
∞∑
n=0

cn

(
xn − cn

x− c

)∣∣∣∣∣
=

∣∣∣∣∣
∞∑
n=1

cn na
n−1
n

∣∣∣∣∣
≤

∞∑
n=1

n
∣∣cnan−1

n

∣∣
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for some an between c and x, for each natural number n, by the Mean Value

Theorem. By Theorem 8.6.6, the series
∞∑
n=1

n |cnan|n−1 converges. Hence,

lim
x→c
|f(x)− f(c)| = lim

x→c
|x− c|

{
|c0 − c|+

∞∑
n=1

n
∣∣cnan−1

n

∣∣}

= 0 ·

{
|c0 − c|+

∞∑
n=1

n
∣∣cnan−1

n

∣∣}
= 0.

Hence, f(x) is continuous at each number c such that −R < c < R. This
completes the proof of this theorem.

Theorem 8.6.8 Suppose that R > 0, f(x) =
∞∑
n=0

cnx
n and R is the radius

of convergence of the series
∞∑
n=0

cnx
n. For each x such that |x| < R, we define

F (x) =

∫ x

0

f(t)dt.

Then, for each x such that |x| < R, we get

F (x) =
∞∑
n=0

cn
xn+1

n+ 1
.
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Proof. Suppose that |x| < |r| < R. Then

lim
m→∞

∣∣∣∣∣F (x)−
m∑
n=0

cn
xn+1

n+ 1

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣
∫ x

0

f(t)dt−
m∑
n=0

cn

∫ x

0

tn

∣∣∣∣∣
= lim

m→∞

∣∣∣∣∣
∫ x

0

{
f(t)−

m∑
n=0

cnt
n

}
dt

∣∣∣∣∣
= lim

m→∞

∣∣∣∣∣
∫ x

0

{
∞∑

n=m+1

cnt
n

}
dt

∣∣∣∣∣
≤ lim

m→∞

∫ x

0

{
∞∑

n=m+1

|cntn|

}
dt

≤ lim
m→∞

∫ x

0

{
∞∑

n=m+1

|cnrn|

}
dt

≤ lim
m→∞

(
∞∑

n=m+1

|cnrn|

)∣∣∣∣∫ x

0

1 dt

∣∣∣∣
= 0 · |x|
= 0,

since
∞∑
n=0

|cnrn| converges.

It follows that ∫ x

0

f(t)dt =

∫ x

0

(
∞∑
n=0

cnt
n

)
dt

=
∞∑
n=0

cn
xn+1

n+ 1
.

This completes the proof of the this theorem.

Theorem 8.6.9 Suppose that f(x) =
∞∑
n=0

cnx
n for all |x| < R, where R > 0

is the radius of convergence of the series
∞∑
n=0

cnx
n. Then f(x) has continuous



8.6. POWER SERIES 353

derivatives of all orders for |x| < R that are obtained by successive term-by-

term differentiations of
∞∑
n=0

cnx
n.

Proof. For each |x| < R, we define

g(x) =
∞∑
n=1

ncnx
n−1.

Then, by Theorem 8.6.5, R is the radius of convergence of the series
∞∑
n=1

ncnx
n−1.

By Theorem 8.6.7, g(x) is continuous. Hence,

c0 +

∫ x

0

g(x)dx = c0 +
∞∑
n=1

cnx
n = f(x).

By the fundamental theorem of calculus, f ′(x) = g(x). This completes the
proof of this theorem.

Definition 8.6.2 The radius of convergence of the power series

∞∑
k=1

ak(x− a)k

is

(a) zero, if the series converges only for x = a;

(b) r, if the series converges absolutely for all x such that |x − a| < r and
diverges for all x such that |x− a| > r.

(c) ∞, if the series converges absolutely for all real number x.

If the radius of convergence of the power series in (x − a) is r, 0 < r < ∞,
then the interval of convergence of the series is (a− r, a+ r). The end points
x = a + r or x = a − r are included in the interval of convergence if the
corresponding series

∑∞
k=1 akr

k or
∑∞

k=1(−1)kakr
k converges, respectively. If

r =∞, then the interval of convergence is (−∞,∞).
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Exercises 8.4 In problem 1–12, determine the Taylor series expansion for
each function f about the given value of a.

1. f(x) = e−2x, a = 0 2. f(x) = cos(3x), a = 0

3. f(x) = ln(x), a = 1 4. f(x) = (1 + x)−2, a = 0

5. f(x) = (1 + x)−3/2, a = 0 6. f(x) = ex, a = 2

7. f(x) = sinx, a =
π

6
8. f(x) = cosx, a =

π

4

9. f(x) = sinx, a =
π

3
10. f(x) = x1/3, a = 8

11. f(x) = sin

(
x− 1

2

)
, a = 0 12. f(x) = cos

(
x− 1

2

)
, a = 0

In problems 13-20, determine
n∑
k=0

f (k)(a)
(x− a)k

k!
.

13. f(x) = ex
2
, a = 0, n = 3 14. f(x) = x2e−x, a = 0, n = 3

15. f(x) =
1

1− x2
, a = 0, n = 2 16. f(x) = arctanx, a = 0, n = 3

17. f(x) = e2x cos 3x, a = 0, n = 4 18. f(x) = arcsinx, a = 0, n = 3

19. f(x) = tanx, a = 0, n = 3 20. f(x) = (1 + x)1/2, a = 0, n = 5

8.7 Taylor Polynomials and Series

Theorem 8.7.1 (Taylor’s Theorem) Suppose that f, f ′, · · · , f (n+1) are all
continuous for all x such that |x− a| < R. Then there exists some c between
a and x such that

f(x) = Pn(x) +Rn(x)

where

Pn(x) =
n∑
k=0

f (k)(a)
(x− a)k

k!
, Rn(x) = f (n+1)(c)

(x− a)n+1

(n+ 1)!
.
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The polynomial Pn(x) is called the nth degree Taylor polynomial approxima-
tion of f . The term Rn(x) is called the Lagrange form of the remainder.

Proof. We define a function g of a variable z such that

g(z) = [f(x)− f(z)]− f ′(z)(x− z)
1!

− f ′′(z)(x− z)2

2!
− · · ·

− f (n)(z)(x− z)n

n!
−Rn(x)

(x− z)n+1

(x− a)n+1
.

Then

g(a) = f(x)−

{
n∑
k=0

f (k)(a)

k!
(x− a)k +Rn(x)

}
= 0,

and
g(x) = f(x)− f(x) = 0.

By the Mean Value Theorem for derivatives there exists some c between a
and x such that g′(c) = 0. But

g′(z) = −f ′(z)− [−f ′(z) + f ′′(z)(x− z)]−
[
−f ′′(z)(x− z) +

f ′′′(z)(x− z)2

2!

]
− · · ·

−
[
−f

n(z)(x− z)n−1

n!
+
f (n+1)(z)(x− z)n

n!

]
+Rn(x)

(n+ 1)(x− z)n

(x− a)n+1

= −f (n+1)(z)
(x− z)n

n!
+Rn(x)

(n+ 1)(x− z)n

(x− a)n+1

g′(c) = 0 = −f (n+1)(c)
(x− c)n

n!
+Rn(x)

(n+ 1)(x− c)n

(x− a)n+1
.

Therefore,

Rn(x) =
(x− a)n+1

n+ 1
· f

(n+1)(c)

n!
= f (n+1)(c)

(x− a)n+1

(n+ 1)!

as required. This completes the proof of this theorem.

Theorem 8.7.2 (Binomial Series) If m is a real number and |x| < 1, then

(1 + x)m = 1 +
∞∑
k=1

m(m− 1) · · · (m− k + 1)

k!
xk

= 1 +mx+
m(m− 1)

2!
x2 +

m(m− 1)(m− 2)

3!
x3 + · · · .
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This series is called the binomial series. If we use the notation(
m

k

)
=
m(m− 1) · · · (m− k + 1)

k!

then

(
m

k

)
is called the binomial coefficient and

(1 + x)m = 1 +
∞∑
k=1

(
m

k

)
xk.

If m is a natural number, then we get the binomial expansion

(1 + x)m = 1 +
m∑
k=1

(
m

k

)
xk.

Proof. Let f(x) = (1 + x)m. Then for all natural numbers n,

f ′(x) = m(1 + x)m−1, f ′′(x) = m(m− 1)(1 + x)m−2, · · · ,
f (n)(x) = m(m− 1) · · · (m− n+ 1)(1 + x)m−n.

Thus, f (n)(0) = m(m− 1) · · · (m− n+ 1), and

f(x) =
∞∑
n=0

m(m− 1)(m− 2) · · · (m− n+ 1)

n!
xn

=
∞∑
n=0

(
m

n

)
xn

where

(
m

0

)
= 1 and

(
m

n

)
= m(m − 1) · · · (m − n + 1) is called the nth

binomial coefficient. By the ratio test we get

lim
n→∞

∣∣∣∣m(m− 1) · · · (m− n)xn+1

(n+ 1)!
· n!

m(m− 1) · · · (m− n+ 1)xn

∣∣∣∣
= |x|

∣∣∣∣ lim
n→∞

(
m− n
n+ 1

)∣∣∣∣
= |x|

∣∣∣∣ lim
n→∞

m
n
− 1

1 + 1
n

∣∣∣∣
= |x|,
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and, hence, the series converges for |x| < 1.

This completes the proof of the theorem.

Theorem 8.7.3 The following power series expansions of functions are valid.

1. (1− x)−1 = 1 +
∞∑
k=1

xk and (1 + x)−1 = 1 +
∞∑
k=1

(−1)kxk, |x| < 1.

2. ex = 1 +
∞∑
k=1

xk

k!
, e−x = 1 +

∞∑
k=1

(−1)k
xk

k!
, |x| <∞.

3. sinx =
∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
, |x| <∞.

4. cosx =
∞∑
k=0

(−1)k
x2k

(2k)!
, |x| <∞.

5. sinhx =
∞∑
k=0

x2k−1

(2k + 1)!
, |x| <∞.

6. coshx =
∞∑
k=0

x2k

(2k)!
, |x| <∞.

7. ln(1 + x) =
∞∑
k=0

(−1)k
xk+1

k + 1
, −1 < x ≤ 1.

8.
1

2
ln

(
1 + x

1− x

)
=
∞∑
k=0

x2k+1

2k + 1
, −1 < x < 1.

9. arctanx =
∞∑
k=0

(−1)k
x2k+1

2k + 1
, −1 ≤ x ≤ 1.

10. arcsinx =
∞∑
k=0

(
−1/2

k

)
(−1)k

x2k+1

2k + 1
, |x| ≤ 1.
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Proof.
Part 1. By the geometric series expansion, for all |x| < 1, we have

1

1− x
= 1 +

∞∑
k=1

xk and
1

1 + x
=

1

1− (−x)
= 1 +

∞∑
k=1

(−1)kxk.

Part 2. If f(x) = ex, then f (n)(x) = ex and f (n)(0) = 1 for each n =
0, 1, 2, · · · . Thus

ex =
∞∑
n=0

xn

n!
.

By the ratio test the series converges for all x.

lim
n→∞

∣∣∣∣ xn+1

(n+ 1)!
· n!

xn

∣∣∣∣ = |x| lim
n→∞

1

n+ 1
= 0.

Part 3. Let f(x) = sinx. Then f ′(x) = cosx, f ′′(x) = − sinx, f (3)(x) =
− cosx and f (4)(x) = sinx. It follows that, for each n = 0, 1, 2, 3, · · · , we
have

f (4n)(0) = 0, f (4n+1)(0) = 1, f (4n+2)(0) = 0 and f (4n+3)(0) = −1.

Hence,

sinx = x− x3

3!
+
x5

5!
− · · ·

=
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
.

By the ratio test, the series converges for all |x| <∞:

lim
n→∞

∣∣∣∣(−1)n+1 x2n+3

(2n+ 3)!

(2n+ 1)!

x2n+1

∣∣∣∣
= x2 lim

n→∞

1

(2n+ 3)(2n+ 2)

= 0.

Part 4. By term-by-term differentiation we get

cosx = (sinx)′ =
∞∑
n=0

(−1)n
x2n

(2n)!
, |x| <∞.
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Part 5. For all |x| <∞, we get

sinhx =
1

2
(ex − e−x)

=
1

2

(
∞∑
n=0

xn

n!
−
∞∑
n=0

(−1)n
xn

n!

)

=
∞∑
n=0

x2n+1

(2n+ 1)!
.

Part 6. By differentiating term-by-term, we get

coshx = (sinhx)′ =
∞∑
n=0

x2n

(2n)!
, l |x| <∞.

Part 7. For each |x| < 1, by performing term by integration, we get

ln(1 + x) =

∫ x

0

1

1 + x
dx

=

∫ ∞
0

(
∞∑
n=0

(−1)nxn

)
dx

=
∞∑
n=0

(−1)n
xn+1

n+ 1
.

Part 8. By Part 7, for all |x| < 1, we get

1

2
ln

(
1 + x

1− x

)
=

1

2
[ln(1 + x)− ln(1− x)]

=
1

2

[
∞∑
n=0

(−1)n
xn+1

n+ 1
−
∞∑
n=0

(−1)n
(−x)n+1

n+ 1

]

=
1

2

[
∞∑
n=0

(−1)n

n+ 1
(1− (−1)n+1)xn+1

]

=
∞∑
k=0

x2k+1

2k + 1
.

Recall that arctanhx =
1

2
ln

(
1 + x

1− x

)
.
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Part 9. For each |x| ≤ 1, we perform term-by-term integration to get

arctanx =

∫ x

0

1

1 + x2
dx

=

∫ x

0

(
∞∑
k=0

(−1)kx2k

)
dx

=
∞∑
k=0

(−1)k
x2k+1

(2k + 1)
.

Part 10. By performing term-by-term integration of the binomial series, we
get

arcsinx =

∫ x

0

1√
1− x2

dx

=

∫ x

0

(1− x2)−1/2dx

=

∫ x

0

(
∞∑
k=0

(
−1/2

k

)
(−x2)k

)
dx

=
∞∑
k=0

(
−1/2

k

)
(−1)k

x2k+1

(2k + 1)
.

This series converges for all |x| ≤ 1.
This completes the proof of this theorem.

8.8 Applications



Chapter 9

Analytic Geometry and Polar
Coordinates

A double right-circular cone is obtained by rotating a line about a fixed axis
such that the line intersects the axis and makes the same angle with the
axis. The intersection point of the line and the axis is called a vertex. A
conic section is the intersection of a plane and the double cone. Some of
the important conic sections are the following: parabola, circle, ellipse and a
hyperbola.

9.1 Parabola

Definition 9.1.1 A parabola is the set of all points in the plane that are
equidistant from a given point, called the focus, and a given line called the
directrix. A line that passes through the focus and is perpendicular to the
directrix is called the axis of the parabola. The intersection of the axis with
the parabola is called the vertex.

Theorem 9.1.1 Suppose that v(h, k) is the vertex and the line x = h− p is
the directrix of a parabola. Then the focus is F (h + p, k) and the axis is the
horizontal line with equation y = k. The equation of the parabola is

(y − k)2 = 4p(x− h).

361
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Theorem 9.1.2 Suppose that v(h, k) is the vertex and the line y = k − p is
the directrix of a parabola. Then the focus is F (h, k + p) and the axis is the
vertical line with equation x = h. The equation of the parabola is

(x− h)2 = 4p(y − k).

9.2 Ellipse

Definition 9.2.1 An ellipse is the locus of all points, the sum of whose
distances from two fixed points, called foci, is a fixed positive constant that
is greater than the distance between the foci. The midpoint of the line
segment joining the two foci is called the center. The line segment through
the foci and with end points on the ellipse is called the major axis. The
line segment, through the center, that has end points on the ellipse and is
perpendicular to the major axis is called the minor axis. The intersections
of the major and minor axes with the ellipse are called the vertices.

Theorem 9.2.1 Let an ellipse have center at (h, k), foci at (h± c, k), ends
of the major axis at (h±a, k) and ends of the minor axis at (h, k± b), where
a > 0, b > 0, c > 0 and a2 = b2 + c2. Then the equation of the ellipse is

(x− h)2

a2
+

(y − k)2

b2
= 1.

The length of the major axis is 2a and the length of the minor axis is 2b.

Theorem 9.2.2 Let an ellipse have center at (h, k), foci at (h, k ± c), ends
of the major axis at (h, k ± a), and the ends of the minor axis at (h± b, k),
where a > 0, b > 0, c > 0 and a2 = b2 + c2. Then the equation of the ellipse
is

(y − k)2

a2
+

(x− h)2

b2
= 1.

The length of the major axis is 2a and the length of the minor axis is 2b.

Remark 24 If c = 0, then a = b, foci coincide with the center and the
ellipse reduces to a circle.
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9.3 Hyperbola

Definition 9.3.1 A hyperbola is the locus of all points, the difference of
whose distances from two fixed points, called foci, is a fixed positive constant
that is less than the distance between the foci. The mid point of the line
segment joining the two foci is called the center. The line segment, through
the foci, and with end points on the hyperbola is called the major axis. The
end points of the major axis are called the vertices.

Theorem 9.3.1 Let a hyperbola have center at (h, k), foci at (h ± c, k),
vertices at (h ± a, k), where 0 < a < c, b =

√
c2 − a2, then the equation of

the hyperbola is
(x− h)2

a2
− (y − k)2

b2
= 1.

Theorem 9.3.2 Let a hyperbola have center at (h, k), foci at (h, k ± c),
vertices at (h, k ± a), where 0 < a < c, b =

√
c2 − a2, then the equation of

the hyperbola is
(y − k)2

a2
− (x− h)2

b2
= 1.

9.4 Second-Degree Equations

Definition 9.4.1 The transformations{
x = x′ cos θ − y′ sin θ
y = x′ sin θ + y′ cos θ

}
and {

x′ = x cos θ + y sin θ
y′ = −x sin θ + y cos θ

}
are called rotations. The point P (x, y) has coordinates (x′, y′) in an x′y′-
coordinate system obtained by rotating the xy-coordinate system by an angle
θ.

Theorem 9.4.1 Consider the equation ax2 + bxy + cy2 + dx + ey + f =
0, b 6= 0. Let cot 2θ = (a − c)/b and x′y′-coordinate system be obtained
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through rotating the xy-coordinate system through the angle θ. Then the
given second degree equation

ax2 + bxy + cy2 + dx+ ey + f = 0

becomes
a′x

′2 + c′y
′2 + d′x+ e′y + f ′ = 0

where

a′ = a cos2 θ + b cos θ sin θ + c sin2 θ

c′ = a sin2 θ − b sin θ cos θ + c cos2 θ

d′ = d cos θ + e sin θ

e′ = −d sin θ + e cos θ

f ′ = f

Furthermore, the given second degree equation represents

(i) an ellipse, a circle, a point or no graph if b2 − 4ac < 0;

(ii) a hyperbolic or a pair of intersecting lines if b2 − 4ac > 0;

(iii) a parabola, a line, a pair of parallel lines, or else no graph if b2−4ac = 0.

9.5 Polar Coordinates

Definition 9.5.1 Each point P (x, y) in the xy-coordinate plane is assigned
the polar coordinates (r, θ) that satisfy the following relations:

x2 + y2 = r2, y = r cos θ, y = r sin θ.

The origin is called the pole and the positive x-axis is called the polar axis.
The number r is called the radial coordinate and the angle θ is called the
angular coordinates. The polar coordinates of a point are not unique as the
rectangular coordinates are. In particular,

(r, θ) ≡ (r, θ + 2nπ) ≡ (−r, θ + (2m+ 1)π)

where n and m are any integers. There does exist a unique polar represen-
tation (r, θ) if r ≥ 0 and 0 ≤ θ < 2π.
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9.6 Graphs in Polar Coordinates

Theorem 9.6.1 A curve in polar coordinates is symmetric about the

(a) x-axis if (r, θ) and (r,−θ) both lie on the curve;

(b) y-axis if (r, θ) and (r, π − θ) both lie on the curve;

(c) origin if (r, θ), (r, θ + π) and (−r, θ) all lie on the curve.

Theorem 9.6.2 Let e be a positive number. Let a fixed point F be called the
focus and a fixed line, not passing through the focus, be called a directrix. If
P is a point in the plane, let PF stand for the distance between P and the
focus F and let PD stand for the distance between P and the directrix. Then
the locus of all points P such that PF = ePD is a conic section representing

(a) an ellipse if 0 < e < 1;

(b) a parabola if e = 1;

(c) a hyperbola if e > 1;

The number e is called the eccentricity of the conic.
In particular an equation of the form

r =
ek

1± e cos θ

represents a conic with eccentricity e, a focus at the pole (origin), and a
directrix perpendicular to the polar axis and k units to the right of the pole,
in the case of + sign, and k units to the left of the pole, in the case of −
sign.

Also, an equation of the form

r =
ek

1± e sin θ

represents a conic with eccentricity e, a focus at the pole, and a directrix
parallel to the polar axis and k units above the pole, in the case of + sign,
and k units below the pole, in the case of − sign.



366CHAPTER 9. ANALYTIC GEOMETRY AND POLAR COORDINATES

9.7 Areas in Polar Coordinates

Theorem 9.7.1 Let r = f(θ) be a curve in polar coordinates such that f is
continuous and nonnegative for all α ≤ θ ≤ β where α ≤ β ≤ 2π + α. Then
the area A bounded by the curves r = f(θ), θ = α and θ = β is given by

A =

∫ β

α

1

2
r2dθ =

1

2

∫ β

α

(f(θ))2dθ.

Theorem 9.7.2 Let r = f(θ) be a curve in polar coordinates such that f
and f ′ are continuous for α ≤ θ ≤ β, and there is no overlapping, the arc
length L of the curve from θ = α to θ = β is given by

L =

∫ β

α

√
(f(θ))2 + (f ′(θ))2 dθ

=

∫ β

α

√
r2 +

(
dr

dθ

)2

dθ

9.8 Parametric Equations

Definition 9.8.1 A parametrized curve C in the xy-plane has the form

C = {(x, y) : x = f(t), y = g(t), t ∈ I}

for some interval I, finite or infinite.
The functions f and g are called the coordinate functions and the variable

t is called the parameter.

Theorem 9.8.1 Suppose that x = f(t), y = g(t) are the parametric equa-
tions of a curve C. If f ′(t) and g′(t) both exist and f ′(t) 6= 0, then

dy

dx
=
g′(t)

f ′(t)
.

Also, if f ′′(t) and g′′(t) exist, then

d2y

dx2
=
f ′(g)g′′(t)− g′(t)f ′′(t)

(f ′(t))2
.

At a point P0(f(t0), g(t0)), the equation of
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(a) the tangent line is

y − g(t0) =
g′(t0)

f ′(t0)
(x− f(t0))

(b) the normal line is

y − g(t0) = −f
′(t0)

g′(t0)
(x− f(t0))

provided g′(t0) 6= 0 and f ′(t0) 6= 0.

Theorem 9.8.2 Let C = {(x, y) : x = f(t), y = g(t), a ≤ t ≤ b} where f ′(t)
and g′(t) are continuous on [a, b]. Then the arc length L of C is given by

L =

∫ b

a

[(f ′(t))2 + (g′(t))2]1/2dt

=

∫ b

a

[(
dx

dt

)2

+

(
dy

dt

)2
]1/2

dt.

Theorem 9.8.3 Let C = {(x, y) : x = f(t), y = g(t), a ≤ t ≤ b}, where f ′(t)
and g′(t) are continuous on [a, b].

(a) If C lies in the upper half plane or the lower half plane and there is no
overlapping, then the surface area generated by revolving C around the
x-axis is given by ∫ b

a

2πg(t)
√

(f ′(t))2 + (g′(t))2 dt.

(b) If 0 ≤ f(t) on [a, b], (or f(t) ≤ 0 on [a, b]) and there is no overlapping,
then the surface area generated by revolving C around the y-axis is∫ b

a

2πf(t)
√

(f ′(t))2 + (g′(t))2 dt.
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Definition 9.8.2 Let C = {(x(t), y(t)) : a ≤ t ≤ b} for some interval I.
Suppose that x′(t), y′(t), x′′(t) and y′′(t) are continuous on I.

(a) The arc length s(t) is defined by

s(t) =

∫ t

a

[(x′(t))2 + (y′(t))2]1/2dt.

(b) The angle of inclination, φ, of the tangent line to the curve C is defined
by

φ(t) = arctan

(
y′(t)

x′(t)

)
= arctan

(
dy

dx

)
.

(c) The curvature κ(t), read kappa of t, is defined by∣∣∣∣dφds
∣∣∣∣ =
|x′(t)y′′(t)− y′(t)x′′(t)|
[(x′(t))2 + (y′(t))2]3/2

.

(d) The radius of curvature, R, is defined by

R(t) =
1

κ(t)
.
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